Diffusion

Atoms movements in materials

Movement of atoms in **solids**, liquids and gases is very important.

Examples: Hardening steel, chrome-plating, gas reactions, Si wafers .. etc.

We will study:
- Atomic mechanisms of diffusion
- Mathematics of diffusion
- Factors affecting diffusion
- Examples

• Steady state diffusion
• Nonsteady state diffusion
• Summary

Self-diffusion or interdiffusion between two materials:
- Self-diffusion occurs in pure elements
- Interdiffusion occurs through materials or diffusion couple

Diffusion is the mass transport through atomic motion at high temperature.

Example:
- Two chambers, each containing a different gas, separated by a removable barrier; when the barrier is pulled away, interdiffusion occurs

Recall Arhenius equation

\[N_v = N_o \exp \left(- \frac{Q}{kT} \right) \]

where
- \(N_v \) = equilibrium # of vacancies
- \(N_o \) = total number of lattice sites
- \(k \) = Boltzman’s constant
- \(Q \) = activation energy for vacancy formation

As \(T \) \(\uparrow \), number of vacancies \(\uparrow \), and energy \(\uparrow \), so diffusion is faster

Example: lead (Pb)

- Slope = \(-\frac{Q}{k} \)

The process of substitutional diffusion requires the presence of vacancies (Vacancies give the atoms a place to move).

Heat causes atoms to vibrate:
- Vibration amplitude increases with temperature
- Melting occurs when vibrations are sufficient to rupture bonds.
Diffusion Mechanisms

- Atoms are constantly in motion and vibrating.
 - Change of atomic position requires:
 - vacant site
 - energy to break atomic bonds
- Two types of diffusion mechanism:
 - vacancy diffusion
 - interstitial diffusion
- Movement of vacancies in one direction is equivalent to atomic movement in the opposite direction.

Diffusion

- Diffusion is a process. Rate of diffusion is important.
 - diffusion flux \(J \) is defined as the mass, \(M \), diffusing through unit area, \(A \), per unit time, \(t \):
 \[J = \frac{M}{At} \quad \text{or} \quad J = \frac{1}{A} \frac{dM}{dt} \]
 - If flux does not change with time: ………………

INTERSTITIAL DIFFUSION

- Interstitial atom moves from one interstitial site to another (empty).
- Energy needed, again to squeeze past atoms.
- Example: ………….
- Usually much faster because many more empty interstitial sites and no vacancies are required.

Steady-State Diffusion

- Concentration gradient:
 \[\frac{dC}{dx} \]
- Fick’s 1st law:
 \[J = -D \frac{dC}{dx} \]
 Where \(D \) is the diffusion coefficient (diffusivity) or speed of diffusion (\(m^2/s \)).
- Because atoms diffuse down concentration gradient.
- Example of steady-state diffusion is gas diffusing through a metal plate (gas pressure constant).
Example

The purification of H₂ (gas) by diffusion through a Pd sheet was discussed in Callister 5.3. Compute the number of kilograms of hydrogen that pass per hour through a 5 mm thick sheet of Pd having an area of 0.20 m² at 500°C. Assume a diffusion coefficient of 1.0x10⁻⁸ m²/s, that the concentrations at the high and low pressure sides of the plate are 2.4 and 0.6 kg of H₂ per m³ of Pd, and that steady state conditions have been attained.

Recall, flux is mass per unit time per unit area. Thus, multiplying J by area and time will give total mass.

Case Hardening

- Example of interstitial diffusion is a case hardened gear.
- Diffuse carbon atoms into the host iron atoms at the surface.

• Result: The "Case" is
 - hard to deform: C atoms "lock" planes from shearing.
 - hard to crack: C atoms put the surface in compression.

Steady State Diffusion: Summary

• Steady State: the concentration profile doesn't change with time.

 Steady State:

 \[J_x(\text{left}) = J_x(\text{right}) \]

 Concentration, C, in the box doesn’t change w/time.

• Apply Fick’s First Law:

 \[J_x = -D \frac{dC}{dx} \]

• If \(J_x_{\text{left}} = J_x_{\text{right}} \), then \(\frac{dC}{dx}_{\text{left}} = \frac{dC}{dx}_{\text{right}} \)

• Result: the slope, dC/dx, must be constant (i.e., slope doesn’t vary with position!)

Non-steady State Diffusion

• In most real situations diffusion is not
 • Flux and concentration gradient vary with time

 • The changes of the concentration profile is given in this case by a differential equation, second law:

 \[\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial C}{\partial x} \right) \]

 • If diffusion coefficient is independent of composition then:

 \[\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} \]

 Solution of this equation is concentration profile as function of time,
Fick’s Second Law

\[\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} \]

- Solution requires boundary conditions.
 - A useful solution is for a semi-infinite solid when the surface concentration remains constant.
 - What is semi-infinite solid?
 - semi infinite bar: If none of the diffusing atoms reaches the bar end during the time over which the diffusion takes place.
 - \(l > 10 \sqrt{Dt} \), where \(l \): bar length, \(D \): diffusion coefficient and \(t \): time

Fick’s Second Law - Application

- Simple boundary condition is where the surface concentration is held constant,
 - e.g. gas phase with constant partial pressure at the surface
- Conditions are:
 - before diffusion, solute atom have a homogeneous concentration of \(C_0 \)
 - \(x \) is zero at the surface and increases with distance into the solid
 - time is zero just before diffusion begins
- Mathematically, for \(t = 0, C = C_0 \) at \(0 \leq x \leq \infty \)
 \[t > 0, C = C_s \text{ at } x = 0 \text{ and } C = C_0 \text{ at } x = \infty \]
 \(C_s \): constant surface concentration
- applying these boundary conditions gives:
 \[\frac{C_x - C_0}{C_s - C_0} = 1 - \text{erf}\left(\frac{x}{2\sqrt{Dt}} \right) \]

Application of Fick’s Second Law

\[\frac{C_x - C_0}{C_s - C_0} = 1 - \text{erf}\left(\frac{x}{2\sqrt{Dt}} \right) \]

\(C_s \): Surface concentration which remains constant
\(C_0 \): Initial concentration in solid
\(C_x \): Concentration at distance \(x \) into sample after time \(t \).
\(D \): Diffusivity of solute in solvent, m\(^2\)s\(^{-1}\)
\(t \): Time, seconds
\(\text{erf} \): Gaussian error function, based on integration of the “bell shaped” curve

\[\text{erf} (z) = \frac{1}{\sqrt{\pi}} \int_0^z \exp(-y^2) \, dy \]

Tabulation of Error Function Values

<table>
<thead>
<tr>
<th>(z)</th>
<th>(\text{erf}(z))</th>
<th>(z)</th>
<th>(\text{erf}(z))</th>
<th>(z)</th>
<th>(\text{erf}(z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.55</td>
<td>0.5633</td>
<td>1.3</td>
<td>0.9340</td>
</tr>
<tr>
<td>0.025</td>
<td>0.0282</td>
<td>0.60</td>
<td>0.6039</td>
<td>1.4</td>
<td>0.9523</td>
</tr>
<tr>
<td>0.05</td>
<td>0.0564</td>
<td>0.65</td>
<td>0.6420</td>
<td>1.5</td>
<td>0.9661</td>
</tr>
<tr>
<td>0.10</td>
<td>0.1125</td>
<td>0.70</td>
<td>0.6778</td>
<td>1.6</td>
<td>0.9763</td>
</tr>
<tr>
<td>0.15</td>
<td>0.1680</td>
<td>0.75</td>
<td>0.7112</td>
<td>1.7</td>
<td>0.9838</td>
</tr>
<tr>
<td>0.20</td>
<td>0.2227</td>
<td>0.80</td>
<td>0.7421</td>
<td>1.8</td>
<td>0.9891</td>
</tr>
<tr>
<td>0.25</td>
<td>0.2763</td>
<td>0.85</td>
<td>0.7707</td>
<td>1.9</td>
<td>0.9928</td>
</tr>
<tr>
<td>0.30</td>
<td>0.3286</td>
<td>0.90</td>
<td>0.7970</td>
<td>2.0</td>
<td>0.9953</td>
</tr>
<tr>
<td>0.35</td>
<td>0.3794</td>
<td>0.95</td>
<td>0.8209</td>
<td>2.2</td>
<td>0.9981</td>
</tr>
<tr>
<td>0.40</td>
<td>0.4284</td>
<td>1.0</td>
<td>0.8427</td>
<td>2.4</td>
<td>0.9993</td>
</tr>
<tr>
<td>0.45</td>
<td>0.4755</td>
<td>1.1</td>
<td>0.8802</td>
<td>2.6</td>
<td>0.9998</td>
</tr>
<tr>
<td>0.50</td>
<td>0.5205</td>
<td>1.2</td>
<td>0.9103</td>
<td>2.8</td>
<td>0.9999</td>
</tr>
</tbody>
</table>
Factors Affecting Solid-State Diffusion

- Diffusing species and host material are important
 - smaller atoms can “squeeze” in between host atoms more easily
 - in lower packing density host material ⇒ easier for atoms to migrate with fewer bonds to expand
 - eg faster in more open lattice (BCC faster than FCC) ([example 5.3](#))
 - in lower melting point host material ⇒ weaker bonds (easier to push apart)

- **Temperature** has a strong effect on diffusion rates:
 \[
 D = D_0 \exp \left(- \frac{Q_d}{RT} \right)
 \]
 Where:
 - \(D_0 \) = temperature dependant pre-exponential constant
 - \(Q_d \) = activation energy for diffusion
 - \(R \) = gas constant (8.31 J/mol K)
 - \(T \) = absolute temperature

Activation energy is the barrier to diffusion and controls the diffusion coefficient, D

Typical Diffusion Data

<table>
<thead>
<tr>
<th>Host crystal</th>
<th>Atom</th>
<th>(D_0) (cm²/s)</th>
<th>(Q_d) (eV/atom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>Cu</td>
<td>0.20</td>
<td>2.04</td>
</tr>
<tr>
<td>Cu</td>
<td>Zn</td>
<td>0.34</td>
<td>1.98</td>
</tr>
<tr>
<td>Ag</td>
<td>Ag</td>
<td>0.40</td>
<td>1.91</td>
</tr>
<tr>
<td>Ag</td>
<td>Au</td>
<td>0.26</td>
<td>1.98</td>
</tr>
<tr>
<td>Ag</td>
<td>Cu</td>
<td>1.2</td>
<td>2.00</td>
</tr>
<tr>
<td>Ag</td>
<td>Pb</td>
<td>0.22</td>
<td>1.65</td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td>0.002</td>
<td>1.20</td>
</tr>
<tr>
<td>Si</td>
<td>Al</td>
<td>8.0</td>
<td>3.47</td>
</tr>
<tr>
<td>Si</td>
<td>Ga</td>
<td>3.6</td>
<td>3.51</td>
</tr>
<tr>
<td>Si</td>
<td>In</td>
<td>16.0</td>
<td>3.90</td>
</tr>
</tbody>
</table>

Typical values for preexponential (\(D_0 \)) and activation energy

(after Kittel, “Solid State Physics” 5th ed.)
An FCC Fe-C alloy initially containing 0.35 wt. % C is exposed to an oxygen-rich (and carbon-free) atmosphere at 1400 K (1127°C). Under these conditions, the carbon in the alloy diffuses toward the surface and reacts with the oxygen in the atmosphere; that is, the carbon concentration at the surface is maintained essentially at 0 wt. % C. (This process of carbon depletion is termed decarburization). At what position will the carbon concentration be 0.15 wt. % after a 10-hour treatment. The value of D at 1400 K is 6.9×10^{-11} m2/s.

Example

SUMMARY

<table>
<thead>
<tr>
<th>Diffusion FASTER for...</th>
<th>Diffusion SLOWER for...</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ……… crystal structures</td>
<td>• …………………. structures</td>
</tr>
<tr>
<td>• ……… melting T materials</td>
<td>• ………. melting T materials</td>
</tr>
<tr>
<td>• materials with …………. bonding</td>
<td>• materials with ………….. bonding</td>
</tr>
<tr>
<td>• ……….. diffusing atoms</td>
<td>• …………. diffusing atoms</td>
</tr>
<tr>
<td>• ………… density materials</td>
<td>• ………….. density materials</td>
</tr>
</tbody>
</table>

Next topic:
Mechanical properties of materials