Diffusion

Atoms movements in materials

Movement of atoms in solids, liquids and gases is very important

Examples: Hardening steel, chrome-plating, gas reactions, Si wafers ... etc.

We will study:

Dr. M. Medraj

- Atomic mechanisms of diffusion • Steady state diffusion
- Mathematics of diffusion
- Factors affecting diffusion

Mech, Eng, Dept, - Concordia University

• Examples

• Summary

• Nonsteady state diffusion

Mech 221 lecture 9/1

Dr. M. Medraj

Diffusion

- diffusion is the mass transport through atomic motion at high temperature
- can have *self-diffusion* or *interdiffusion* between two materials
 - Self-diffusion occurs in pure elements

Example: Two chambers, each containing a different gas, separated by a removable barrier; when the barrier is pulled away, *interdiffusion* occurs

driving force is the chemical or *concentration gradient* through materials or *diffusion couple*

Mech. Eng. Dept. - Concordia University

The process of substitutional diffusion requires the presence of vacancies (Vacancies give the atoms a place to move)

Mech 221 lecture 9/2

Mech 221 lecture 9/7

Dr. M. Medraj

Example

The purification of H_2 (gas) by diffusion through a Pd sheet was discussed in Callister 5.3. Compute the number of kilograms of hydrogen that pass per hour through a 5 mm thick sheet of Pd having an area of 0.20 m^2 at 500°C. Assume a diffusion coefficient of $1.0 \times 10^{-8} \text{ m}^2/\text{s}$, that the concentrations at the high and low pressure sides of the plate are 2.4 and 0.6 kg of H_2 per m³ of Pd, and that steady state conditions have been attained.

Recall, flux is mass per unit time per unit area. Thus, multiplying J by area and time will give total mass.

Dr. M. Medraj

Mech, Eng, Dept, - Concordia University

Mech 221 lecture 9/9

Surface

Ross.)

• Result: The "Case" is - hard to deform: C atoms "lock" planes from shearing. - hard to crack: C atoms put the surface in compression.

Example of interstitial diffusion is a case

hardened gear.

- Diffuse carbon atoms into the host iron atoms at the surface.


```
Dr. M. Medraj
```

Mech. Eng. Dept. - Concordia Universit

Mech 221 lecture 9/10

Steady State Diffusion: Summary

• Steady State: the concentration profile doesn't change with time.

- Apply Fick's First Law: $J_x = -D \frac{dC}{dx}$
- If $J_{x_left} = J_{x_right}$, then $\left(\frac{dC}{dx}\right)_{left} = \left(\frac{dC}{dx}\right)$
- Result: the slope, dC/dx, must be constant (i.e., slope doesn't vary with position)!

Mech 221 lecture 9/11

Non-steady State Diffusion

- In most real situations diffusion is not
- Flux and concentration gradient vary with time

FIGURE 5.5 Concentration profiles for nonsteady-state diffusion taken at three different times, t_1 , t_2 , and t_3 .

• The changes of the concentration profile is given in this case by a differential equation, second law:

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial C}{\partial x} \right)$$

 If diffusion coefficient is independent of *composition* then:

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

Solution of this equation is concentration profile as function of time,

Fick's Second Law

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

- Solution requires boundary conditions.
 - A useful solution is for a *semi-infinite* solid when the surface concentration remains constant.
- What is semi-infinite solid?
 - ✓ *semi infinite bar*: If non of the diffusing atoms reaches the bar end during the time over which the diffusion takes place.
 - ✓ $l > 10 \sqrt{Dt}$, where l: bar length, D: diffusion coefficient and t: time

Dr. M. Medraj

$\frac{C_x - C_0}{C_s - C_0} = 1 - erf\left(\frac{x}{2\sqrt{Dt}}\right)$	$c_s = c_s - c_0$
	Distance from interface, x
$C_s =$ Surface concentration which re	mains constant
C_0 = Initial concentration in solid	
$C_x = Concentration at distance x into$	o sample after time t.
D = Diffusivity of solute in solvent,	m^2s^{-1}
t = Time, seconds	
<i>erf</i> = Gaussian error function, based of	on integration of the "bell
shaped" curve	

Ζ.

$$\operatorname{erf}(z) = (2/\sqrt{\pi}) \int_{0}^{z} \exp(-y^{2}) dz \qquad \left(\frac{x}{2\sqrt{Dt}}\right) = z$$

Dr. M. Medraj

Mech 221 lecture 9/13

 C_0

Fick's Second Law - Application

- Simple boundary condition is where the surface concentration is held constant,
 - e.g. gas phase with constant partial pressure at the surface
- Conditions are:
 - before diffusion, solute atom have a homogeneous concentration of C_o
 - x is zero at the surface and increases with distance into the solid
 - time is zero just before diffusion begins
- Mathematically, for t = 0, $C = C_0$ at $0 \le x \le \infty$ t > 0, $C = C_s$ at x = 0 and $C = C_o$ at $x = \infty$ $C_s = constant surface concentration$
- applying these boundary conditions gives:

$$\frac{C_x - C_0}{C_s - C_0} = 1 - erf\left(\frac{x}{2\sqrt{Dt}}\right)$$

Dr. M. Medraj

Mech. Eng. Dept. - Concordia Universit

Mech 221 lecture 9/14

Tabulation of Error Function Values

Table 5.1 Tabulation of Error Function Values

z	erf(z)	z	erf(z)	z	erf(z)
0	0	0.55	0.5633	1.3	0.9340
0.025	0.0282	0.60	0.6039	1.4	0.9523
0.05	0.0564	0.65	0.6420	1.5	0.9661
0.10	0.1125	0.70	0.6778	1.6	0.9763
0.15	0.1680	0.75	0.7112	1.7	0.9838
0.20	0.2227	0.80	0.7421	1.8	0.9891
0.25	0.2763	0.85	0.7707	1.9	0.9928
0.30	0.3286	0.90	0.7970	2.0	0.9953
0.35	0.3794	0.95	0.8209	2.2	0.9981
0.40	0.4284	1.0	0.8427	2.4	0.9993
0.45	0.4755	1.1	0.8802	2.6	0.9998
0.50	0.5205	1.2	0.9103	2.8	0.9999

 $\frac{C_x - C_0}{C_x - C_0} = 1 - erf(z)$ |=z

Special case

• If it is desired to achieve a particular concentration of solute atoms in an alloy then:

 $\frac{C_1 - C_o}{C - C} = \dots$

 $\frac{x}{2\sqrt{Dt}} =$

• These equations facilitate the

specific case (see example 5.3).

diffusion computation for this

FIGURE 5.5 Concentration profiles for nonsteady-state diffusion taken at three different times, t_1 , t_2 , and t_3 .

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

ia University

and

```
Mech 221 lecture 9/17
```


Factors Affecting Solid-State Diffusion

- Diffusing species and host material are important
 - smaller atoms can "squeeze" in between host atoms more easily
 - in lower packing density host material ⇒ easier for atoms to migrate with fewer bonds to expand

• eg faster in more open lattice (BCC faster than FCC) (......)

- in lower melting point host material \Rightarrow weaker bonds (easier to push apart)
- *Temperature* has a strong effect on diffusion rates: Where:

$$D = D_o \exp\left(-\frac{Q_d}{RT}\right)$$

 D_o = temperature dependant pre-exponential constant Q_d = *activation energy* for diffusion R = gas constant (8.31 J/mol K) T = absolute temperature

Activation energy is the barrier to diffusion and controls the diffusion coefficient, D

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

Mech 221 lecture 9/18

Typical Diffusion Data

Host		Do	0 1
crystal	Atom	(cm^2/s)	q _d (eV/atom)
Cu	Cu	0.20	2.04
Cu	Zn	0.34	1.98
Ag	Ag	0.40	1.91
Ag	Au	0.26	1.98
Ag	Cu	1.2	2.00
Ag	Pb	0.22	1.65
Ŭ	U	0.002	1.20
Si	Al	8.0	3.47
Si	Ga	3.6	3.51
Si	In	16.0	3.90

Typical values for preexponential (D_o) and activation energy

(after Kittel, "Solid State Physics" 5th ed.)

Experimental Determination of Activation Energy

FIGURE 5.7 Plot of the logarithm of the diffusion coefficient versus the reciprocal of absolute temperature for several metals.

Dr. M. Medraj

Example

An FCC Fe-C alloy initially containing 0.35 wt. % C is exposed to an oxygenrich (and carbon-free) atmosphere at 1400 K (1127°C). <u>Under these conditions</u> the carbon in the alloy diffuses toward the surface and reacts with the oxygen in the atmosphere; that is, the carbon concentration at the surface is maintained essentially at 0 wt. % C. (This process of carbon depletion is termed decarburization). At what position will the carbon concentration be 0.15 wt. % after a 10-hour treatment. The value of D at 1400 K is 6.9x10⁻¹¹ m²/s.

Mech. Eng. Dept. - Concordia University

SUMMARY

Diffusion FASTER for	Diffusion SLOWER for
crystal structures	• structures
• melting T materia	als • melting T materials
• materials with bonding	• materials with bonding
• diffusing atom	s • diffusing atoms
• density material	s • density materials
Dr. M. Medraj Mec	h. Eng. Dept Concordia University Mech 221 lecture 9/22

Next topic: Mechanical properties of materials

Dr. M. Medraj

Mech 221 lecture 9/23

Mech 221 lecture 9/21