Name:

Student Id. \#

Question 1: (5 marks)

A Metallic wire of length 200 mm is subjected to a load of 2000 N . The yield strength of the material is 100 MPa . Under this load, the length of the wire is measured to be 200.1 mm .
1- What will be the length of the wire after the load is removed?
(The young modulus of this alloy is 97 GPa . The cross sectional are of the wire is $25 \mathrm{~mm}^{2}$.)
2- This wire has been used to hang a heavy load of 5 kN when it experiences an elongation of 1.0 mm . In this case what will be the length of the rod after the load is removed?

Solution:

$$
\begin{array}{r}
\sigma=\frac{F}{A}=2000 / 25=80 \mathrm{MPa} \tag{1}\\
\\
80 \mathrm{MPa}<100 \mathrm{MPa}
\end{array}
$$

Therefore, the wire will deform elastically. The length of the wire will remain 200 mm .

$$
\begin{equation*}
\sigma=\frac{F}{A}=5000 / 25=200 \mathrm{MPa} \tag{2}
\end{equation*}
$$

$200 \mathrm{MPa}>100 \mathrm{MPa}$
Therefore, the deformation is plastic. Elastic recovery need to be calculated
Total strain, $\varepsilon_{T}=\Delta \mathrm{l} / \mathrm{lo}=1 / 200=0.005$
Elastic recovery, $\varepsilon_{e}=\sigma / \mathrm{E}=200 / 97000=0.002$
Hence, Plastic or permanent strain, $\varepsilon_{P}=\varepsilon_{T}-\varepsilon_{e}=0.005-0.002=0.003$
Let the final length of the wire be lf.
$\varepsilon_{P}=\left(l_{\mathrm{f}}-\mathrm{l}_{\mathrm{o}}\right) / \mathrm{l}_{\mathrm{o}}=\left(\mathrm{l}_{\mathrm{f}}-200\right) / 200$
So, $\mathrm{l}_{\mathrm{f}}=200.6 \mathrm{~mm}$

Question 2: (5 marks)

For some metal alloy, a true stress of 415 MPa produces a plastic true strain of 0.475 . How much will a specimen of this material elongate when a true stress of 325 MPa is applied if the original length is 300 mm ? Assume a value of 0.25 for the strain-hardening exponent n .

Solution:

Firstly it is necessary to solve for K from the given true stress and strain. Rearrangement of equation 6.19 yields;

$$
\mathrm{K}=\frac{\sigma_{\mathrm{T}}}{\left(\varepsilon_{\mathrm{T}}\right)^{\mathrm{n}}}=\frac{415}{(0.475)^{\mathrm{n}}}=500 \mathrm{MPa}
$$

Next we must solve for the true strain produced when a true stress of 325 MPa is applied, also using Equation 6.19, thus;

$$
\varepsilon_{T}=\left[\frac{\sigma_{T}}{K}\right]^{1 / n}=\left[\frac{325}{500}\right]^{1 / 0.25}=0.179
$$

Now, rearrangement of equation 6.16 for solving l_{i} gives:

$$
\varepsilon_{T}=\ln \left(\frac{l_{i}}{l_{0}}\right) \rightarrow l_{i}=l_{0} e^{0.179}=(300 \mathrm{~mm}) e^{0.179}=358.8 \mathrm{~mm}
$$

And finally, the elongation Δl is:

$$
\Delta l=l_{i}-l_{0}=358.8-300=58.8 \mathrm{~mm}
$$

