**Part B** – Answer all questions. Put the working for your solution in the <u>space below the question</u> and if indicated, <u>put your</u> <u>final answer in the box provided</u>.

| Table | 17.1 | The | Standard | emf | Serie |
|-------|------|-----|----------|-----|-------|
|       |      |     |          |     |       |

51 (a). An electrochemical cell is constructed such that on one side a pure Zn electrode is in contact with a solution containing  $Zn^{2+}$  ions at a concentration of  $10^{-2} M$ . The other cell half consists of a pure Pb electrode immersed in a solution of Pb<sup>2+</sup> ions that has a concentration of  $10^{-4} M$ .

4

marks

At what temperature will the potential between the two electrodes be +0.568 V?

|                         | Electrode Reaction                                        | Standard Electrode<br>Potential, V <sup>0</sup> (V) |
|-------------------------|-----------------------------------------------------------|-----------------------------------------------------|
|                         | $Au^{3+} + 3e^- \longrightarrow Au$                       | +1.420                                              |
| <b>∧</b>                | $O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$                 | +1.229                                              |
| avo pla na erectore     | $Pt^{2+} + 2e^- \longrightarrow Pt$                       | $\sim +1.2$                                         |
|                         | $Ag^+ + e^- \longrightarrow Ag$                           | +0.800                                              |
| Increasingly inert      | $\mathrm{Fe}^{3+} + e^- \longrightarrow \mathrm{Fe}^{2+}$ | +0.771                                              |
| (cathodic)              | $O_2 + 2H_2O + 4e^- \longrightarrow 4(OH^-)$              | +0.401                                              |
|                         | $Cu^{2+} + 2e^- \longrightarrow Cu$                       | +0.340                                              |
|                         | $2H^+ + 2e^- \longrightarrow H_2$                         | 0.000                                               |
|                         | $Pb^{2+} + 2e^- \longrightarrow Pb$                       | -0.126                                              |
|                         | $\mathrm{Sn}^{2+} + 2e^- \longrightarrow \mathrm{Sn}$     | -0.136                                              |
|                         | $Ni^{2+} + 2e^- \longrightarrow Ni$                       | -0.250                                              |
|                         | $Co^{2+} + 2e^- \longrightarrow Co$                       | -0.277                                              |
|                         | $Cd^{2+} + 2e^- \longrightarrow Cd$                       | -0.403                                              |
|                         | $Fe^{2+} + 2e^- \longrightarrow Fe$                       | -0.440                                              |
| Increasingly active     | $Cr^{3+} + 3e^- \longrightarrow Cr$                       | -0.744                                              |
| (anodic)                | $Zn^{2+} + 2e^- \longrightarrow Zn$                       | -0.763                                              |
|                         | $Al^{3+} + 3e^- \longrightarrow Al$                       | -1.662                                              |
| and the analysis of the | $Mg^{2+} + 2e^- \longrightarrow Mg$                       | -2.363                                              |
| $\downarrow$            | $Na^+ + e^- \longrightarrow Na^-$                         | -2.714                                              |
|                         | $K^+ + e^- \longrightarrow K$                             | -2.924                                              |

Temperature (°C):

51 (b). Briefly describe the phenomenon of passivity. Name two common types of alloys that passivate.

4 marks

| Passivating alloy A: | Passivating alloy B: |  |
|----------------------|----------------------|--|
|                      |                      |  |
|                      |                      |  |
|                      |                      |  |

|            | 52 (a). Give 2 examples of metallurgical/processing techniques that are used to increase resistance to creep in meta | I |
|------------|----------------------------------------------------------------------------------------------------------------------|---|
| 4<br>marks | alloys and explain briefly how they work.                                                                            |   |
|            | Technique 1:                                                                                                         |   |
|            |                                                                                                                      |   |
|            |                                                                                                                      |   |
|            |                                                                                                                      |   |
|            |                                                                                                                      |   |
|            |                                                                                                                      |   |
|            |                                                                                                                      |   |
|            |                                                                                                                      |   |

Technique 2:

52 (b) Steady-state creep rate data are given here for some alloy taken at 200°C:

| $\dot{\varepsilon}_{s}$ (h <sup>-1</sup> ) | $\sigma$ (MPa) |
|--------------------------------------------|----------------|
| 2.5 x 10 <sup>-3</sup>                     | 55             |
| 2.4 x 10 <sup>-2</sup>                     | 69             |

4 marks

If it is known that the activation energy for creep is 140,000 J/mol, compute the steadystate creep rate at a temperature of 250°C and a stress level of 48 MPa.

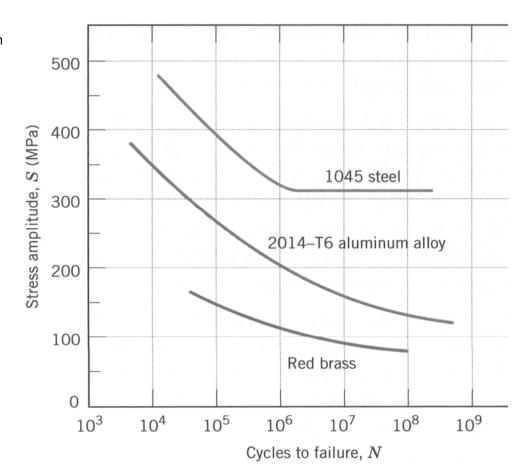
Steady-state creep rate:

| 3     | 53 (a). Briefly describe 3 methods for increasing the resistance to fatigue in metallic components. |
|-------|-----------------------------------------------------------------------------------------------------|
| marks | Technique 1:                                                                                        |
|       |                                                                                                     |
|       |                                                                                                     |
|       | Technique 2:                                                                                        |
|       |                                                                                                     |
|       |                                                                                                     |
|       | Technique 3:                                                                                        |
|       |                                                                                                     |
|       |                                                                                                     |

## 3/6

2 marks

4


marks

53 (b). Using the Fatigue data given on the S-N Figure answer the following.

The Fatigue limit for 1045 steel is:

The Fatigue limit for 2014 T6 aluminum is:

(c). Determine the fatigue lifetimes for cylindrical specimens (15 mm diameter) of these two materials that are dynamically loaded from 0 to + 61,850 N in uniaxial tension.



Fatigue life 1045 steel: Fatigue life 2014 aluminum:

- 54. Fill in the missing words in the following statements with the best word from the list of words given at the end of the text.
  - a) The principal advantage of \_\_\_\_\_\_ is its very low density which gives its alloys a very good strength to weight ratio.
  - b) Nickel and its alloys are commonly used at high \_\_\_\_\_\_ and also in \_\_\_\_\_\_ and also in \_\_\_\_\_\_
     \_\_\_\_\_\_ environments, such as being in contact with human skin.
  - c) Although \_\_\_\_\_\_ and its alloys do not show fatigue limits, their good strength and stiffness to weight ratios have resulted in them being used extensively in aerospace applications.
  - d) From a mechanical property viewpoint, steels not only have excellent \_\_\_\_\_\_, they can also be produced with a wide range of \_\_\_\_\_\_ by varying heat treatments.
  - e) Aluminum alloys can be either \_\_\_\_\_\_ or \_\_\_\_\_
     depending on the alloy system. \_\_\_\_\_\_ may also be used as a strengthening method for wrought alloys.
  - f) One of the best alloys for damping vibrations is \_\_\_\_\_\_. This is due to the microstructure which contains ferrite and/or pearlite and \_\_\_\_\_\_.
  - g) \_\_\_\_\_\_ is used in large quantities for \_\_\_\_\_\_ steel to reduce \_\_\_\_\_\_ and its alloys are also used for high pressure die castings for small machine components.
  - and its alloys have a very good combination of mechanical properties but they also show excellent resistance to many \_\_\_\_\_\_\_. Their main disadvantage is their reactivity with air when molten which increases their processing costs.
  - i) \_\_\_\_\_\_ is the hardest of the cast irons and is used primarily for its excellent wear resistance.

j) \_\_\_\_\_\_ and \_\_\_\_\_ alloy steels such as 4340 (steel with chromium, nickel, molybdenum additions), can be used for very demanding applications such as aircraft undercarriages because of their combination of high \_\_\_\_\_\_ and high \_\_\_\_\_\_

and its alloys are useful in electrical systems because of their high \_\_\_\_\_\_\_\_.
 and \_\_\_\_\_\_\_\_. However they are also used in \_\_\_\_\_\_\_\_\_ fixtures because of their good resistance to corrosion in water.

grey-cast-iron, copper, magnesium, white-cast-iron, titanium, aluminium, zinc, chemicals, corrosive, temperatures, plumbing, thermal-conductivity, stiffness, rusting, heat-treatable, graphite-flakes, strengths, quenched, strength, galvanising, toughness, non-heat-treatable, electrical-conductivity, cold-working, tempered.

marks

**MECH 321** 

Equation Sheet

$$U_{r} = \frac{\sigma_{y}^{2}}{2E} \qquad \varepsilon_{T} = \ln\left(\frac{l_{i}}{l_{o}}\right) \qquad \varepsilon_{eng} = \left(\frac{l_{i} - l_{o}}{l_{o}}\right) = \frac{\Delta l}{l_{o}} \qquad \sigma_{T} = k\varepsilon_{T}^{n} \text{ (uniform plastic)}$$

$$\sigma_{y} = \sigma_{0} + kd^{-1/2} \qquad \% \text{ Cold Work} = \left(\frac{A_{o} - A_{d}}{A_{o}}\right) x100 \qquad \tau = \frac{M_{T}r}{J} \qquad \gamma = \frac{r\theta}{L} \qquad \tau_{r} = \sigma \cos \lambda \cos \phi$$

$$\rho_{c} = V_{f} \rho_{f} + (1 - V_{f})\rho_{m} \qquad L_{c} = \frac{\sigma_{f}d}{2\tau_{c}} \qquad E_{c1} = E_{f} v_{f} + E_{m} v_{m} \qquad E_{c2} = \frac{E_{f}E_{m}}{E_{f}(1 - v_{f}) + E_{m}v_{f}}$$

$$\sigma_{cd}^{*} = \sigma_{f}^{*}V_{f}\left(1 - \frac{\ell_{c}}{2\ell}\right) + \sigma_{m}^{'}(1 - V_{f}) \qquad \sigma_{cd'}^{*} = \frac{\ell\tau_{c}}{d}V_{f} + \sigma_{m}^{'}(1 - V_{f}) \qquad \sigma_{cl}^{*} = \sigma_{m}^{'}(1 - V_{f}) + \sigma_{f}^{*}V_{f}$$

$$\sigma_{c2} \approx \frac{\sigma_m}{2} \qquad \sigma_{\max} = 2\sigma_o \left(\frac{a}{\rho}\right)^{1/2} \qquad k_t = \frac{\sigma_{\max}}{\sigma_o} \qquad \sigma_c = \sqrt{\frac{2E\gamma_s}{\pi a}} \quad \text{(brittle)} \quad \sigma_c = \sqrt{\frac{2E(\gamma_s + \gamma_p)}{\pi a}} \quad \text{(plastic)}$$

$$G_{c} = \frac{K_{1c}^{2}}{E} \qquad K_{1c} = Y\sigma\sqrt{\pi a} \qquad B \ge 2.5 \left(\frac{K_{1c}}{\sigma_{y}}\right)^{2} \qquad \sigma_{amplitude} = \frac{\sigma_{range}}{2} = \frac{\sigma_{max} - \sigma_{min}}{2}$$

$$\sigma_{mean} = \frac{\sigma_{max} + \sigma_{min}}{2} \qquad \sigma_{range} = \sigma_{max} - \sigma_{min} \quad \frac{da}{dN} = A(\Delta K)^m \text{ where } (\Delta K = Y(\sigma_{max} - \sigma_{min})\sqrt{\pi a})$$

$$\sigma_{thermal} = \alpha E \Delta T \qquad \dot{\varepsilon} = A e^{-\frac{Q}{RT}} = k \sigma^n e^{-\frac{Q}{RT}} P_{(Larson-Miller)} = T(C + \log t)$$

$$\Delta V = (V_{2}^{o} - V_{1}^{o}) - \frac{RT}{nF} \ln \left[ \frac{M_{1}^{n+}}{M_{2}^{n+}} \right] \qquad \Delta V = (V_{2}^{o} - V_{1}^{o}) - \frac{0.0592}{n} \log \left[ \frac{M_{1}^{n+}}{M_{2}^{n+}} \right]$$
$$CPR = \frac{KW}{\rho At} \qquad r = \frac{i}{nF}$$

Constants

R = 8.314 J.mol<sup>-1</sup>.K<sup>-1</sup>

F = 96,500 C.mol<sup>-1</sup>

 $N_A = 6.023 \times 10^{23}$  molecules/mol