<u>Outline</u>	 <i>Charpy and Izod</i> tests measure <i>impact energy or notch toughness</i> Charpy V- notch (CVN) <u>most common</u>
 Impact Testing Charpy Test Ductile to Brittle Transition Temperature 	Before fracture mechanics - impact testing was used to measure impact behaviour and likelihood of brittle fracture. Developed to detect the onset of brittle failure in ductile materials e.g. steel ships, bridges etc. - Still used in quality control and Standards (ship plate etc).
 Metallurgical Factors Affecting T_T Fatigue Fatigue Testing Types of Fatigue 	 Three main factors were producing these fractures in service: Triaxial stress state (at notches, cracks etc) Low temperatures High strain or loading rates
	 Impact testing is used for: ✓ checking quality ✓ tendency for brittle failure ✓ temperature dependence.
Mech. Eng. Dept. – Concordia University MSE 521 Lecture 11/1	Dr. M. Medraj Mech. Eng. Dept. – Concordia University MSE 521 Lecture 11.

Dr. M. Medraj

Charpy Test

- Use *standard sized bar* specimens with a central notch
- Weighted pendulum released from a height, h
- Impacts the specimen behind the notch (stress concentration)
- Fracture of specimen occurs and energy is absorbed
- The pendulum travels to point, h', where h'< h
- Obtain the amount of absorbed energy from scale
 - and test method

Ductile to Brittle Transition in Steel

Impact Testing

- Primary function of Charpy test
- At high temperature, CVN for steel is relatively high but drops with decrease in temperature
- At low temperature steel can be brittle
- The sudden drop in impact energy is the *transition* (DBT)
- Steels should always be used *above* their DBT
- Polymers also experience DBT
- Aluminum and copper alloys show

Al and Cu have FCC structure

Dr. M. Medraj

Ductile to Brittle Transition Behavior

0.01

- define, instead minimum requirement of CVN = 20J(15ft.lb) is used
- DBT changes with carbon content in steel
- Steels: 0.01-0.67% carbon

Can use fracture surface appearance to estimate the DBT

Brittle, shiny, faceted, bright, flat overall. no or little deformation

Dr. M. Medraj

Figure 6-11 (Hertzberg) Mech. Eng. Dept. - Concordia University

MSE 521 Lecture 11/5

Ductile to Brittle Transition Behavior

✓ Like tensile specimen, the fractured surface of an impact specimen also contains fibrous, radial (granular and shiny zone) and shear lip zones.

✓ Fibrous zones occur during the process of crack propagation in materials.

 \checkmark The proportions of fibrous zone, radial zone and shear lip zone vary with temp. resulting in different test results.

A sketch of the appearance of fractured surface of impact specimen after Charpy test

MSE 521 Lecture 11/6

> When temp. drops to a certain value, the area of the fibrous zone and the area of granular zone sharply. → The fracture behavior of the material transforms from ductile to brittle.

> DBT temp is usually determined as the area of crystallization zone accounts for 50% of the whole fractured surface (i.e. as the temp. at which the failure surface is 50% shiny), and it is denoted by FATT₅₀ (Fracture Appearance Transition Temp.)

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

Selecting Transition Temperature

 \checkmark T₁: Conservative, above T₁ fracture is 100% fibrous. Fracture Transition Plastic (FTP) - verv demanding.

 \checkmark T₂: 50% cleavage - 50% ductile Fracture Appearance Trans. Temp. (FATT).

 \checkmark T₃: Average of upper and lower shelf values. (often approx = T_2)

 \checkmark T₄: Arbitrary value of energy absorbed, (CVN) e.g. 20 J (15 ft.lb) for low strength ship steel. *Ductility* Transition Temp.

✓ T₅: 100% cleavage fracture. *Nil* Ductility Temperature (NDT)

Figure 14-6. Various criteria of transitiontemperature obtained from Charpy tests

The lower this temperature, the greater the fracture toughness

Energy absorbed

Charpy Test

aluminum, titanium

An instrumented Charpy test allows determination of energy required to crack and also energy to crack rather than just *total energy* for fracture.

fcc materials

Low strength

bcc materials

Dr. M. Medraj

MSE 521 Lecture 11/7

Dr. M. Medraj

Temperature

High - strength materials

Low cycle fatigue

Types of Fatigue

Fatigue limit

.

Fatigue strength at N₁ cycles

• high loads $\rightarrow \dots N_{\rm f} (10^4 - 10^5 \, \rm cycles)$

- high stress environment with high design stress and small safety factor, $DS \approx \sigma_{vs}$
- scheduled inspection and maintenance of parts (aircraft)
- most common cause of fatigue cracking and failure

High cycle fatigue

- low loads $\rightarrow \dots N_{f}$ (>10⁵)
- typically involves low design _ stresses, DS $<< \sigma_{vs}$
- less common cause of failure, results from poor design or environmental effects

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University MSE 521 Lecture 11/17

Fatigue life at stress S₁

Cycles to failure, N (logarithmic scale)

10⁷ N₁ 10⁷

Cycles to failure, N (logarithmic scale)

Low-Cycle Fatigue

• This type of cycling is more likely in nuclear pressure-vessels, steam turbines, and similar components where repeated stresses are created by thermal fluctuations.

• e.g if material is constrained and then heated, thermal stresses are generated; if it is not constrained we have cyclic thermal strains (i.e. heating and cooling of vessels).

- Fatigue results from cyclic: this is induced by the restraint of the dimensional expansion and/or contraction occurring due to varying the temperature.

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MSE 521 Lecture 11/18

Next time: Continue Fatigue