

Materials Selection and Design: Introduction

Example 4: Light and Stiff Beam

Bending is common mode of loading in engineering, e.g., golf clubs, wing spars, floor joists.

Light, square beam (A=b²) with length L, loaded in bending must meet a constraint on its stiffness, S, so that it does not deflect more than d with load F.

Stiffness Constraint	$S = \frac{F}{d} \ge \frac{C_1 EI}{L^3} = \frac{C_1 E}{L^3} \left(\frac{b^4}{12}\right) = \frac{C_1 E}{L^3} \left(\frac{A^2}{12}\right)$	$\begin{array}{ll} \mbox{Mass} & m = AL\rho. \\ \mbox{Constraint} \end{array}$		
Eliminating	g Area, A: $m \ge \left(\frac{12S}{CL}\right)^{1/2} (L^3) \left(\frac{\rho}{E^{1/2}}\right)$	(note L in first bracket)		
If beam remains square, <u>the Light, Stiff Beam</u> is one with largest $\mathbf{P} = \left(\frac{\mathbf{E}^{1/2}}{\rho}\right)$				
If only beam	height can change (not A), then $P = (E^{1/3})$	(ρ) (Car door) $\mathbf{I} \propto \mathbf{b}^3 \mathbf{w}$		
If only beam width can change (not A), then $P = (E/\rho)$				
Dr. M. Medraj	Mech. Eng. Dept Concordia University	Mech321 lecture 20/13		

Example 5: Strong & Light Bending Members

Examples of Materials Indices

Function, Objective, and Constraint	Index	
Tie, minimum weight, stiffness	E/ρ	
Beam, minimum weight, stiffness	$E^{1/2}/\rho$	
Beam, minimum weight, strength	$\sigma^{2/3}/\rho$	
Beam, minimum cost, stiffness	$E^{1/2}/C_m \rho$	C _m =cost/mass
Beam, minimum cost, strength	$\sigma^{2/3}/C_m\rho$	
Column, minimum cost, buckling load	$E^{1/2}\!/C_m\rho$	
Spring, minimum weight for given energy storage	${\sigma_{YS}}^{2\!/E\rho}$	
Thermal insulation, minimum cost, heat flux	$1/(\alpha C_m \rho)$	α =thermal cond
Electromagnet, maximum field, temperature rise	к C _p p	κ =elec. cond

Dr. M. Medraj

Next time: Continue Materials Selection

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

Mech321 lecture 20/17