

#### <u>Outline</u>

- Materials Classifications
- Types of Ferrous Alloys
- Refinement of Steel from Ore
- Plain Carbon Steel
  - Low Carbon Steel
  - Medium Carbon Steel
  - High Carbon Steel
- Tool Steel
- Steel Numbering Systems
- General Effects of Alloying Elements in Steel
- Designations and Compositions of Steels
- Summery of Effects of Alloying Elements

| Dr. | М. | Medraj |
|-----|----|--------|
|     |    |        |

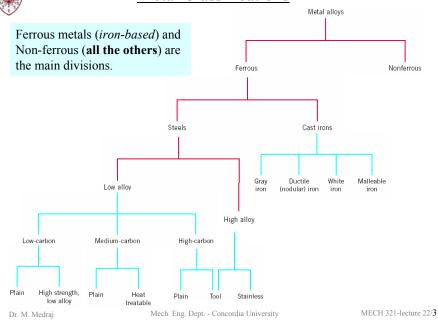
Mech. Eng. Dept. - Concordia University

```
MECH 321-lecture 22/1
```



## Why Metals Are Important

- They have properties that satisfy a wide variety of design requirements
- The manufacturing processes by which they are shaped into products have been developed and refined over many years
- Engineers understand metals
- Also have:
  - *High stiffness and strength* can be alloyed for high rigidity, strength, and hardness
  - *Toughness* capacity to absorb energy better than other classes of materials
  - ✓ Good electrical conductivity Metals are conductors
  - Good thermal conductivity conduct heat better than ceramics or polymers
  - ✓ Cost the price of steel is very ..... with other engineering materials


```
Dr. M. Medraj
```

Mech. Eng. Dept. - Concordia University

MECH 321-lecture 22/2



## Metal Classifications

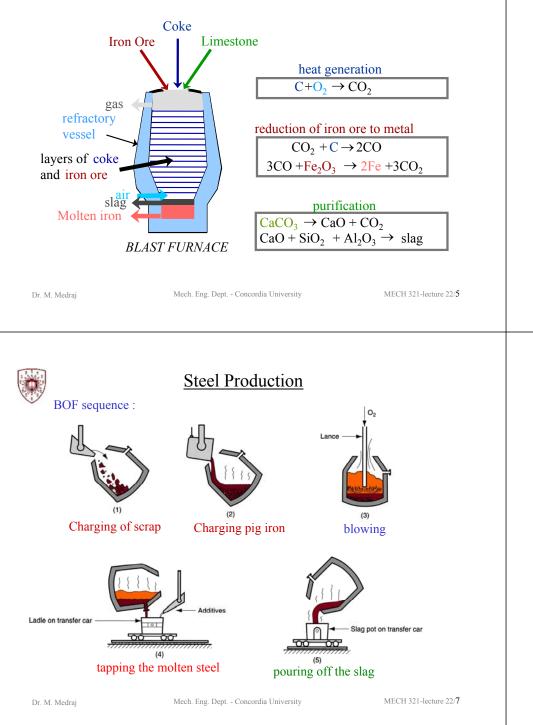


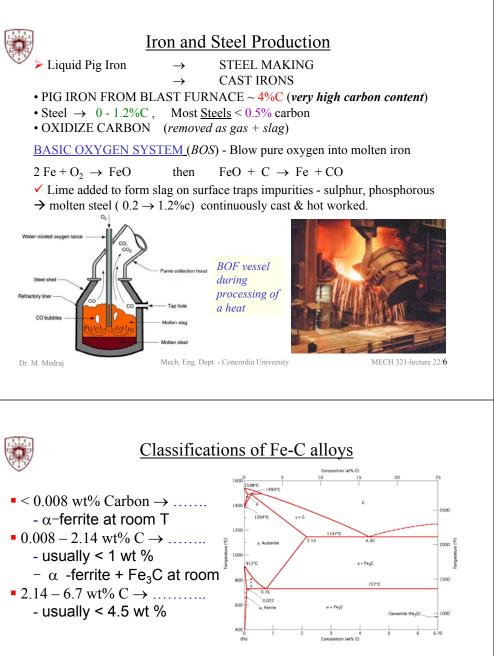


## Types of Ferrous Alloys

#### Ferrous Alloys.

#### Most common engineering metal:


- · Iron ores are relatively abundant
- relatively economical extraction and fabrication
- versatile material and alloys of wide range of properties can be made.


#### Steels

- Iron carbon alloys with usually < 1%wt carbon.
- Plain carbon steels Fe + C + Mn (*no other* ...... *additions*)
- Alloy steels Fe + C + Mn + other additions depending on specific alloy



# Refinement of Steel from Ore





> <u>Magnetic properties:</u>  $\alpha$  -ferrite is magnetic (below 768°C), austenite is non-magnetic.

Dr. M. Medraj

- Mechanical properties: Cementite is very hard and brittle thus it can strengthen steels.
- > Mechanical properties also depend on ....., that is, how ferrite and cementite are mixed.

Mech. Eng. Dept. - Concordia University

| Plain Carbon Steels:- 0.03 - 1.2% Carbon                                                                                                                                                                                                                                                                                                                                                                                         | Plain Carbon Steels:- 0.03 - 1.2% Carbon                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} & 0 & 0.25 & 0.6 & 1.2 \ \% C \\ \hline Low Carbon & Medium & High Carbon \\ Steel & Carbon Steel & Steel \end{array}$ eg AISI-SAE classification xxxx 1020 "Mild Steel" (low carbon steel) $\begin{array}{c} ``10xx" & \text{Refers to plain carbon; i.e } No extra alloying \\ ``xx20" & \text{Refers to 20/100's of carbon, i.e. } 0.2\% C \\ (1040) & 0.4\% C Steel \\ (1080) & 0.8\% C Steel \end{array}$ | <ul> <li>Low carbon steels</li> <li>Largest volume produced.</li> <li>As &lt; 0.25%C, these steels are not hardenable by Quenching &amp; Tempering.</li> <li>Cold working is principle hardening mechanism.</li> <li>Yield strength ≈ 275 MPa, tensile strength 415 - 550 MPa and 25%El.</li> <li>Pearlite &amp; ferrite microstructures, relatively soft &amp; weak but tough &amp; ductile.</li> <li>Machinable</li> <li>Weldable</li> <li>Cheap</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  | High Strength Low Alloy Steels - HSLA steels                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Plain carbon steels good for "everyday" applications<br>but <b>not</b> for high strength or severe requirements.<br>CHEAP!                                                                                                                                                                                                                                                                                                       | <ul> <li>Additional alloying elements; e.g. Cu, V, Ni, Mo,etc. Towers, bridges, columns, pressure vessels - more</li> <li>Higher strengths, but still ductile, formable and applications</li> </ul>                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                  | machinable. And generally more corrosion resistant.                                                                                                                                                                                                                                                                                                                                                                                                           |
| Dr. M. Medraj Mech. Eng. Dept Concordia University MECH 321-lecture 22/9                                                                                                                                                                                                                                                                                                                                                         | Dr. M. Medraj Mech. Eng. Dept Concordia University MECH 321-lecture 22/10                                                                                                                                                                                                                                                                                                                                                                                     |



#### Plain Carbon Steels:- 0.03 - 1.2% Carbon

| Designati     | on <sup>a</sup> |            |            |                                  |  |
|---------------|-----------------|------------|------------|----------------------------------|--|
| AISI/SAE or   | UNS             |            | C          | omposition (wt%) <sup>b</sup>    |  |
| ASTM Number   | Number          | C Mn Other |            |                                  |  |
|               | ŀ               | lain Low-  | Carbon Ste | els                              |  |
| 1010          | G10100          | 0.10       | 0.45       |                                  |  |
| 1020          | G10200          | 0.20       | 0.45       |                                  |  |
| A36           | K02600          | 0.29       | 1.00       | 0.20 Cu (min)                    |  |
| A516 Grade 70 | K02700          | 0.31       | 1.00       | 0.25 Si                          |  |
|               | High            | -Strength, | Low-Alloy  | Steels                           |  |
| A440          | K12810          | 0.28       | 1.35       | 0.30 Si (max), 0.20 Cu (min)     |  |
| A633 Grade E  | K12002          | 0.22       | 1.35       | 0.30 Si, 0.08 V, 0.02 N, 0.03 Nb |  |
| A656 Grade 1  | K11804          | 0.18       | 1.60       | 0.60 Si, 0.1 V, 0.20 Al, 0.015 N |  |

<sup>*a*</sup> The codes used by the American Iron and Steel Institute (AISI), the Society of Automotive Engineers (SAE), and the American Society for Testing and Materials (ASTM), and in the Uniform Numbering System (UNS) are explained in the text.

 $^b$  Also a maximum of 0.04 wt% P, 0.05 wt% S, and 0.30 wt% Si (unless indicated otherwise).



#### Plain Carbon Steels:- 0.03 - 1.2% Carbon

| AISI/SAE or<br>ASTM Number | Tensile<br>Strength<br>[MPa (ksi)] | Yield<br>Strength<br>[MPa (ksi)] | Ductility<br>[%EL in<br>50 mm (2 in.)] | Typical Applications                           |
|----------------------------|------------------------------------|----------------------------------|----------------------------------------|------------------------------------------------|
|                            |                                    | Plain Low-Co                     | arbon Steels                           |                                                |
| 1010                       | 325 (47)                           | 180 (26)                         | 28                                     | Automobile panels,<br>nails, and wire          |
| 1020                       | 380 (55)                           | 205 (30)                         | 25                                     | Pipe; structural and<br>sheet steel            |
| A36                        | 400 (58)                           | 220 (32)                         | 23                                     | Structural (bridges and buildings)             |
| A516 Grade 70              | 485 (70)                           | 260 (38)                         | 21                                     | Low-temperature pres-<br>sure vessels          |
|                            | Hi                                 | gh-Strength, L                   | ow-Alloy Steels                        |                                                |
| A440                       | 435 (63)                           | 290 (42)                         | 21                                     | Structures that are bolted or riveted          |
| A633 Grade E               | 520 (75)                           | 380 (55)                         | 23                                     | Structures used at low<br>ambient temperatures |
| A656 Grade 1               | 655 (95)                           | 552 (80)                         | 15                                     | Truck frames and rail-<br>way cars             |



## Medium Carbon Steels 0.25 - 0.6%C

• Can be heat treated by austenitizing, quenching & tempering to increase mechanical properties (*usually used as* .....).

• *Plain carbon steels* can only be hardened in thin sections with rapid quenching. Often distort & crack on quenching. (hardening). Poor impact resistance at low temperatures.

• To Improve heat treating capabilities add alloying elements: Cr, Ni, Mo, eg. 4340

8650

• Can be much stronger than low-C steels but usually ductility & toughness reduced.

#### Medium Carbon steels used for machine components, crankshafts etc.

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 321-lecture 22/13



#### High Carbon Steels 0.6 - 1.2%C

- Hardest, strongest, least ductile.
- Used in hardened & tempered state for wear resistance & cutting edges.

• Tool steels have alloying elements to form hard carbides; Cr, V, W, Mo,  $(Cr_{23}C_6, V_4C_3, WC)$ .

|                |               |                                    |                                  | echanical Pro<br>rbon and All          | operty Ranges<br>oy Steels |
|----------------|---------------|------------------------------------|----------------------------------|----------------------------------------|----------------------------|
| AISI<br>Number | UNS<br>Number | Tensile<br>Strength<br>[MPa (ksi)] | Yield<br>Strength<br>[MPa (ksi)] | Ductility<br>[%EL in 50<br>mm (2 in.)] | Typical Applications       |
|                |               | Ple                                | ain Low-Carbo                    | on Steels                              |                            |
| 1040           | G10400        | 605-780<br>(88-113)                | 430-585                          | 33-19                                  | Crankshafts, bolts         |

|                   |        | (88 - 113)            | (02 - 85)             |       |                              |
|-------------------|--------|-----------------------|-----------------------|-------|------------------------------|
| $1080^{a}$        | G10800 | 800-1310<br>(116-190) | 480-980<br>(70-142)   | 24-13 | Chisels, hammers             |
| 1095 <sup>a</sup> | G10950 | 760-1280<br>(110-186) | 510-830<br>(74-120)   | 26-10 | Knives, hacksaw blades       |
|                   |        |                       | Alloy Steels          |       |                              |
| 4063              | G40630 | 786-2380<br>(114-345) | 710-1770<br>(103-257) | 24-4  | Springs, hand tools          |
| 4340              | G43400 | 980-1960<br>(142-284) | 895-1570<br>(130-228) | 21-11 | Bushings, aircraft<br>tubing |
| 6150              | G61500 | 815-2170<br>(118-315) | 745-1860<br>(108-270) | 22-7  | Shafts, pistons, gears       |

" Classified as high-carbon steels. Mech. Eng. Dept. - Concordia University

MECH 321-lecture 22/14



## Tool Steel

| AISI       | UNS    |      |          | Compo    | sition (wt%) | a        |          |                                            |
|------------|--------|------|----------|----------|--------------|----------|----------|--------------------------------------------|
| Number     | Number | C    | Cr       | Ni       | Mo           | W        | V        | Typical Applications                       |
| M1         | T11301 | 0.85 | 3.75     | 0.30 max | 8.70         | 1.75     | 1.20     | Drills, saws; lathe<br>and planer tools    |
| A2         | T30102 | 1.00 | 5.15     | 0.30 max | 1.15         | _        | 0.35     | Punches, embossing<br>dies                 |
| D2         | T30402 | 1.50 | 12       | 0.30 max | 0.95         | _        | 1.10 max | Cutlery, drawing dies                      |
| O1         | T31501 | 0.95 | 0.50     | 0.30 max | _            | 0.50     | 0.30 max | Shear blades, cutting<br>tools             |
| <b>S</b> 1 | T41901 | 0.50 | 1.40     | 0.30 max | 0.50 max     | 2.25     | 0.25     | Pipe cutters, con-<br>crete drills         |
| W1         | T72301 | 1.10 | 0.15 max | 0.20 max | 0.10 max     | 0.15 max | 0.10 max | Blacksmith tools,<br>wood-working<br>tools |

"The balance of the composition is iron. Manganese concentrations range between 0.10 and 1.4 wt%, depending on alloy; silicon concentrations between 0.20 and 1.2 wt% depending on alloy.

T, M *High-speed tool steels* - cutting tools in machining

- H *Hot-working tool steels* hot-working dies for forging, extrusion, and die-casting
- D *Cold-work tool steels* cold working dies for sheetmetal pressworking, cold extrusion, and forging
- W Water-hardening tool steels high carbon but little else
- S *Shock-resistant tool steels* tools needing high toughness, as in sheetmetal punching and bending

#### Mold steels - molds for molding plastics and rubber

MECH 321-lecture 22/15



Dr. M. Medraj

## Steel Numbering Systems

- ASTM (Testing and Materials), AISI (Iron and Steel Institute), SAE devised codes to define the various steels
- 1<sup>st</sup> 2 digits: main alloying ingredients
- Last 2 digits: carbon content in hundredths of a percent
- Alloy steel use various elements and combinations to change material properties, e.g. strength, corrosion resistance, hardenability, etc.



#### General Effects of Alloying Elements in Steel

- 1. To improve mechanical properties by increasing the depth to which a steel can be hardened
  - Allows advantage of tempered martensite throughout
  - Allows slower quench
- 2. To allow higher tempering temperatures while maintaining high strength and good ductility.
- 3. To improve mechanical properties at high and low temperatures
- 4. To improve corrosion resistance and elevated temperature oxidation
- 5. To improve special properties such as **abrasion resistance** and **fatigue behaviour**.



#### Designation Systems and Composition Ranges for Steels

 
 Table 12.2a
 AISI/SAE and UNS Designation Systems and Composition Ranges for Plain Carbon Steel and Various Low-Alloy Steels

| AISI/SAE                 | UNS         | Composition Ranges<br>(wt% of Alloying Elements in Addition to C) <sup>b</sup> |             |             |              |  |  |
|--------------------------|-------------|--------------------------------------------------------------------------------|-------------|-------------|--------------|--|--|
| Designation <sup>a</sup> | Designation | Ni                                                                             | Cr          | Mo          | Other        |  |  |
| 10xx, Plain carbon       | G10xx0      |                                                                                |             |             |              |  |  |
| 11xx, Free machining     | G11xx0      |                                                                                |             |             | 0.08 - 0.33S |  |  |
| 12xx, Free machining     | G12xx0      |                                                                                |             |             | 0.10-0.35S,  |  |  |
|                          |             |                                                                                |             |             | 0.04-0.12P   |  |  |
| 13xx                     | G13xx0      |                                                                                |             |             | 1.60-1.90Mn  |  |  |
| 40xx                     | G40xx0      |                                                                                |             | 0.20 - 0.30 |              |  |  |
| 41xx                     | G41xx0      |                                                                                | 0.80 - 1.10 | 0.15-0.25   |              |  |  |
| 43xx                     | G43xx0      | 1.65 - 2.00                                                                    | 0.40 - 0.90 | 0.20-0.30   |              |  |  |
| 46xx                     | G46xx0      | 0.70 - 2.00                                                                    |             | 0.15 - 0.30 |              |  |  |
| 48xx                     | G48xx0      | 3.25-3.75                                                                      |             | 0.20-0.30   |              |  |  |
| 51xx                     | G51xx0      |                                                                                | 0.70 - 1.10 |             |              |  |  |
| 61xx                     | G61xx0      |                                                                                | 0.50 - 1.10 |             | 0.10-0.15V   |  |  |
| 86xx                     | G86xx0      | 0.40 - 0.70                                                                    | 0.40 - 0.60 | 0.15-0.25   |              |  |  |
| 92xx                     | G92xx0      |                                                                                |             |             | 1.80-2.20Si  |  |  |

<sup>a</sup> The earbon concentration, in weight percent times 100, is inserted in the place of "xx" for each specific steel.

<sup>b</sup> Except for 13xx alloys, manganese concentration is less than 1.00 wt%. Except for 12xx alloys, phosphorus concentration is less than 0.35 wt%. Except for 11xx and 12xx alloys, sulfur concentration is less than 0.04 wt%. Except for 92xx alloys, silicon concentration varies between 0.15 and 0.35 wt%.

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 321-lecture 22/17

Mech. Eng. Dept. - Concordia University

MECH 321-lecture 22/18



## Designations and Compositions of Steel Alloys

| Carbon steels | 10XX | Plain carbon, Mn 1.00% max                 | <b>T 11</b> 1.           |
|---------------|------|--------------------------------------------|--------------------------|
|               | 11XX | Resulfurized free machining                | Last two digits          |
|               | 12XX | Resulfurized/rephosphorized free machining | indicate amount          |
|               | 15XX | Plain carbon, Mn 1.00-1.65%                | of C in <i>hundredth</i> |

*Manganese:* Improves hardenability, strength, abrasion resistance and machinability; *deoxidizes the molten steel and reduces hot shortness; decreases weldability.* 

Manganese steel 13XX

Mn 1.75%

Nickel – improve strength without loss of ductility Enhances case hardenability

| Nickel steels | 23XX | Ni 3.50% |
|---------------|------|----------|
| NICKEI SICEIS | 25XX | Ni 5.00% |



Dr. M. Medraj

#### Designations and Compositions of Steel Alloys

|                        | 31XX | Ni 1.25%, Cr 0.65-0.80% |
|------------------------|------|-------------------------|
| Nickel-chromium steels | 32XX | Ni 1.75%, Cr 1.07%      |
| NICKEI-CHIOMIUM SIEEIS | 33XX | Ni 3.50%, Cr 1.50-1.57% |
|                        | 34XX | Ni 3.00%, Cr .77%       |

**Nickel with Chromium:** improved elastic limit, hardenability, impact resistance and fatigue resistance

| Molybdenum steels | 40XX | Mo 0.20-0.25% |
|-------------------|------|---------------|
| worybaenam steels | 44XX | Mo 0.40-0.52% |

*Molybdenum:* Improves hardenability, wear resistance, toughness, elevated temperature strength, creep resistance and hardness; *minimizes temper embrittlement.* 

| Chromium-molybdenum steels            | 41XX | Cr .5095%, Mo .1230%              |
|---------------------------------------|------|-----------------------------------|
| Nickel-chromium-<br>molybdenum steels | 43XX | Ni 1.82%, Cr 0.50-0.80%, Mo 0.25% |
|                                       | 47XX | Ni 1.05%, Cr 0.45%, Mo 0.20-0.35% |

**Molybdenum with nickel and/or chromium** – adds hardness, reduces brittleness, increase toughness



| Designations and Compositions of Ste | eel Alloys |
|--------------------------------------|------------|
|                                      |            |

| Nickel-molybdenum<br>steels | 46XX | X Ni 0.85-1.82%, Mo 0.20-0.25% |  |  |
|-----------------------------|------|--------------------------------|--|--|
|                             | 48XX | Ni 3.50%, Mo 0.25%             |  |  |

**Chromium** – improves strength, ductility, toughness, wear resistance, hardenabilty and high temp. mech. properties.

| 50XX  | Cr 0.27-0.65%          |                                                                                                                        |
|-------|------------------------|------------------------------------------------------------------------------------------------------------------------|
| 51XX  | Cr 0.80-1.05%          |                                                                                                                        |
| 50XXX | Cr 0.50%, C 1.00% min  |                                                                                                                        |
| 51XXX | Cr 1.02%, C 1.00% min  |                                                                                                                        |
| 52XXX | Cr 1.45%, C 1.00% min  |                                                                                                                        |
|       | 51XX<br>50XXX<br>51XXX | 51XX         Cr 0.80-1.05%           50XXX         Cr 0.50%, C 1.00% min           51XXX         Cr 1.02%, C 1.00% min |

*Vanadium:* Improves strength, toughness, abrasion resistance and hardness at elevated temp.; *inhibits grain growth during heat treatment.* 

| Chromium-vanadium steels | 61XX | Cr 0.60-0.95%, V 0.10-0.15% |
|--------------------------|------|-----------------------------|
|--------------------------|------|-----------------------------|

*Tungsten* = *Cobalt:* Improve strength and hardness at elevated temperatures

| Tungsten-chromium<br>steels | 72XX | W 1.75%, Cr 0.75%         |
|-----------------------------|------|---------------------------|
|                             |      | Dart Concerdia University |

```
Dr. M. Medraj
```

Mech. Eng. Dept. - Concordia University



#### Designations and Compositions of Steel Alloys

| Nickel-chromium-<br>molybdenum steels | 81XX | Ni 0.30%, Cr 0.40%, Mo 0.12% |
|---------------------------------------|------|------------------------------|
|                                       | 86XX | Ni 0.55%, Cr 0.50%, Mo 0.20% |
|                                       | 87XX | Ni 0.55%, Cr 0.50%, Mo 0.25% |
|                                       | 88XX | Ni 0.55%, Cr 0.50%, Mo 0.35% |

*Silicon:* Improves strength, hardness, corrosion resistance and electrical conductivity; *decreases magnetic hysteresis loss, machinability and cold formability.* 

| Silicon-manganese<br>steels           | 92XX | Si 1.40-2.00%, Mn 0.65-0.85%, Cr 0-0.65% |
|---------------------------------------|------|------------------------------------------|
| Nickel-chromium-<br>molybdenum steels | 93XX | Ni 3.25%, Cr 1.20%, Mo 0.12%             |
|                                       | 94XX | Ni 0.45%, Cr 0.40%, Mo 0.12%             |
|                                       | 97XX | Ni 0.55%, Cr 0.20%, Mo 0.20%             |
|                                       | 98XX | Ni 1.00%, Cr 0.80%, Mo 0.25%             |

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 321-lecture 22/22



## Alloys Favorably Affecting Properties

| Boron Carbon C<br>Carbon C<br>Manganese Molybdenum M<br>Phosphorus M<br>Titanium M | Strength<br>Carbon<br>Cobalt<br>Chromium<br>Copper<br>Manganese<br>Molybdenum<br>Nickel<br>Niobium<br>Phosphorus<br>Silicon<br>Tantalum<br>Tungsten<br>Vanadium | Toughness<br>Calcium<br>Cerium<br>Chromium<br>Magnesium<br>Molybdenum<br>Nickel<br>Niobium<br>Tantalum<br>Tantalum<br>Tellurium<br>Vanadium<br>Zirconium | Machinability<br>Lead<br>Manganese<br>Phosphorus<br>Selenium<br>Sulfur<br>Tellurium |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|

--- Element with most influence



## Next time: Continue Types of Metal Alloys

MECH 321-lecture 22/21