

Introduction: Ferrous alloys - Review

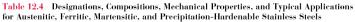
Dr. M. Medraj

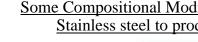
Stainless Steels

Ferritic Stainless Steels:

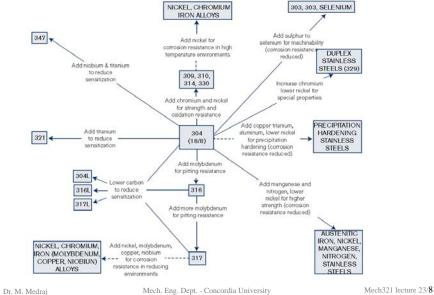
- 11 to 30% Cr & less than 0.2%C; \rightarrow BCC,
- good strengths (cold-working),
- moderate ductilities,
- good corrosion resistance
- relatively inexpensive (4x low-C steel)
- magnetic.

 Table 12.4
 Designations, Compositions, Mechanical Properties, and Typical Applications
 for Austenitic, Ferritic, Martensitic, and Precipitation-Hardenable Stainless Steels


				Mee	chanical Prope	rties	
AISI Number	UNS Number	Composition (wt%)ª	Condition ^b	Tensile Strength [MPa (ksi)]	Yield Strength [MPa (ksi)]	Ductility [%EL in 50 mm (2 in.)]	Typical Applications
				Ferritic			
409	S40900	0.08 C, 11.0 Cr, 1.0 Mn, 0.50 Ni, 0.75 Ti	Annealed	380 (55)	205 (30)	20	Automotive ex haust compo- nents, tanks for agricul- tural sprays
446 Aedraj	S44600	0.20 C, 25 Cr, 1.5 Mn Mech.	Annealed Eng. Dept C	515 (75)	275 (40)	20	Valves (high tempera- ture), glass molds, com- bustion chambers Mech321 lectu


Stainless Steels

Austenitic Stainless Steels:


- FCC, (Cr + Nickel...),
- excellent formability & ductility, cold-working,
- no DBTT,
- not ferromagnetic.
- relatively expensive (6-9x low C steel).

				Me	chanical Prope	rties	
AISI Number	UNS Number	Composition (wt%)*	Condition ⁶	Tensile Strength [MPa (ksi)]	Yield Strength [MPa (ksi)]	Ductility [%EL in 50 mm (2 in.)]	Typical Applications
				Austenitic			
304	S30400	0.08 C, 19 Cr, 9 Ni, 2.0 Mn	Annealed	515 (75)	205 (30)	40	Chemical and food pro- cessing equipment, cryogenic vessels
316L	\$31603	0.03 C, 17 Cr, 12 Ni, 2.5 Mo, 2.0 Mn	Annealed	485 (70)	170 (25)	40	Welding con- struction
Iedrai		Mec	h. Eng. Dept	Concordia Univ	/ersity		Mech321 lec

Some Compositional Modifications of 18/8 Austenitic Stainless steel to produce special properties

Dr. M edraj

Stainless Steels

Martensitic Stainless Steels:

- Cr less than 17%, between 0.1 and 1% C,
 - hence can be heat treated to give martensite BCT,
- high hardness & strength
- corrosion resistance
- magnetic.

 Table 12.4
 Designations, Compositions, Mechanical Properties, and Typical Applications for Austenitic, Ferritic, Martensitic, and Precipitation-Hardenable Stainless Steels

				Me	chanical Prope	rties	
AISI Number	UNS Number	Composition (wt%)ª	Condition ^b	Tensile Strength [MPa (ksi)]	Yield Strength [MPa (ksi)]	Ductility [%EL in 50 mm (2 in.)]	Typical Applications
			Л	<i>Martensitic</i>			
410	\$41000	0.15 C, 12.5 Cr, 1.0 Mn	Annealed Q & T	485 (70) 825 (120)	275 (40) 620 (90)	20 12	Rifle barrels, cutlery, jet engine parts
440A	S44002	0.70 C, 17 Cr, 0.75 Mo, 1.0 Mn	Annealed Q & T	725 (105) 1790 (260)	415 (60) 1650 (240)	20 5	Cutlery, bear- ings, surgical tools
Dr. M. Med	Iraj	N	lech. Eng. Dept.	- Concordia Uni	versity		Mech321 lecture 2

Stainless Steels

Precipitation Hardenable Stainless Steels:

- Strengthening is accomplished by precipitation-hardening heat treatment
- e.g. 17-7PH \rightarrow Cr 17% and Ni 7%
- ultrahigh strength
- corrosion resistance

 Table 12.4
 Designations, Compositions, Mechanical Properties, and Typical Applications for Austenitic, Ferritic, Martensitic, and Precipitation-Hardenable Stainless Steels

				Mee			
AISI Number	UNS Number	Composition (wt%)ª	Condition ^b	Tensile Strength [MPa (ksi)]	Yield Strength [MPa (ksi)]	Ductility [%EL in 50 mm (2 in.)]	Typical Applications
			Precipit	ation Hardena	ble		
17-7PH	\$17700	0.09 C, 17 Cr, 7 Ni, 1.0 Al, 1.0 Mn	Precipita- tion hardened	1450 (210)	1310 (190)	1–6	Springs, knives, pres- sure vessels
	draj	,	(1 E . D	- Concordia Univ			Mech321 lecture 23

Cast Irons

Generally Cast irons have high carbon levels. (2 - 4.5%) and (0.5 - 3.0%) Si

- Fe₃C (*carbide*) \rightarrow metastable or

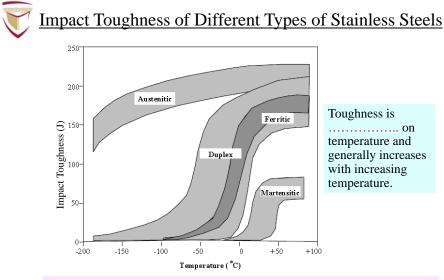
- C (graphite) \rightarrow stable

160

1400

1200

1000


800

600

v (Austenite

a (Ferrite)

0.65 wt% C

• Carbon can either be present as:

> Phase diagram is very similar to

changes - swap graphite for Fe₃C.

> However some cast irons have

➤ Graphite formation favoured by

silicon and slower cooling rates.

Fe-Fe₃C diagram - only slight

both Fe₃C and Graphite!

Composition (at% C)

Liquid

1153°C

740-0

Composition (wt% C)

with graphite instead of cementite as a stable phase.

FIGURE 12.5 The true equilibrium PD of Fe-C

2.1 wt% C

15

4.2 wt% (

y + Graphite

a + Graphite

Liquid

Graphite

1500

1000

100

Graphite

Cast Irons

- Intended for casting into final shape (no hot/cold working, only final machining)
- Easily melted (~ eutectic)
- Very fluid (run well) (~ eutectic)
- Clean surface
- Low shrinkage
- Range of strengths, hardnesses etc.
- Relatively cheap.
- But usually low & very low
 - Four main types:
 - Gray Iron
 - Ductile or Nodular Iron
 - White Iron
 - Malleable Iron

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

Bray Cast Iron (a) Ficure (a) Vibration and (b) Enginee Copyrig

FIGURE 12.7 Comparison of the relative vibrational damping capacities of (*a*) steel and (*b*) gray cast iron. (From *Metals Engineering Quarterly*, February 1961. Copyright 1961 American Society for Metals.)

Table 12.5 Designations, Minimum Mechanical Properties, Approximate Compositions, and Typical Applications for Various Gray, Nodular, and Malleable Cast Irons

				Me	chanical Prope	erties	
UNS Grade Number		Composition (wt%)° Matrix Structure		Tensile Strength [MPa (kst)]	Yield Strength [MPa (ksi)]	Ductility [%EL in 50 mm (2 in.)]	Typical Applications
				G	ray Iron		
SAE G1800	F10004	3.40–3.7 C, 2.55 Si, 0.7 Mn	Ferrite + Pearlite	124 (18)	_	_	Miscellancous soft iron castings in which strength is not a primary consideration
SAE G2500	F10005	3.2–3.5 C, 2.20 Si, 0.8 Mn	Ferrite + Pearlite	173 (25)	_	_	Small cylinder blocks, cylinder heads, pistons, clutch plates, transmission cases
SAE G4000	F10008	3.0–3.3 C, 2.0 Si, 0.8 Mn	Pearlite	276 (40)	_	_	Diesel engine castings, liners, cylinders, and pistons

Gray Cast Iron

- (2 4.5% C) and (1.0 3.0% Si)
- Most common.
- Graphite precipitates as GRAPHITE FLAKES.
- Weak in tension
- Brittle (graphite flakes act as sharp stress concentrators)
- Good for compressive loading
- Machinable,
- Wear resistant,
- Good
- High fluidity
- CHEAP !

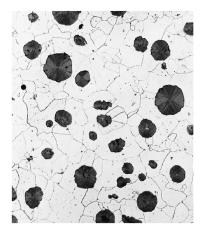
 \checkmark Engine blocks and machine tool bases, drain covers... etc

Slow cooling \rightarrow Graphite flakes in FERRITE MATRIX Faster cooling \rightarrow Graphite flakes in PEARLITIC MATRIX

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

Mech321 lecture 23/14


Ductile Cast Iron

• NODULAR or DUCTILE Cast Iron (USA)

• spheroidal graphite cast iron - s.g. iron (*in UK and Europe*)

• Promote graphite to form spherical nodules (rather than flakes) by adding magnesium or cerium etc (*to reduce S* + *P levels*)

• Graphite nodules in envelopes of ferrite, all surrounded by pearlitic and/or ferritic matrix if heat treated.

Mech321 lecture 23/13

Ductile Cast Iron

- Much better overall mechanical properties than other cast irons.
- Good fluidity & castability
- Good machinability
- Good wear resistance & High strength
- Relatively High
- Hot workability & hardenability
- More expensive than grey cast iron.
- ✓ Valves, pump bodies, crankshafts, gears etc.

Table 12.5 Designations, Minimum Mechanical Properties, Approximate Compositions, and Typical Applications for Various Gray, Nodular, and Malleable Cast Irons

				Mechanical Properties			
UNS Grade Number		Composition (wt%)*	Matrix Structure	Tensile Strength [MPa (kst)]	Yteld Strength [MPa (kst)]	Ductility [%EL in 50 mm (2 in.)]	Typical Applications
				Ductile (Nodular) Iron		** **
ASTM A536					.,		
60-40-18	F32800	3.5–3.8 C, 2.0–2.8 Si.	Ferrite	414 (60)	276 (40)	18	Pressure-containing parts such as valve and pump bodies
100-70-03	F34800	2.0–2.8 SI, 0.05 Mg, <0.20 Ni.	Pearlite	689 (100)	483 (70)	3	High-strength gears and machine components
120-90-02	F36200 J	<0.10 Mo	Tempered martensite	827 (120)	621 (90)	2	Pinions, gears, rollers, slides
Dr. M. Medi	raj		Mech. E	lng. Dept C	oncordia Ur	iversity	Mech321 lecture 23/

White Cast Iron

• Mainly iron carbides (Fe₃C) in a PEARLITIC MATRIX.

• To ensure carbides form instead of graphite \rightarrow relatively low carbon and low silicon contents (<1%) + faster cooling.

• Outer surface may be W.C.I whilst inner regions that cool slower may be G.C.I.

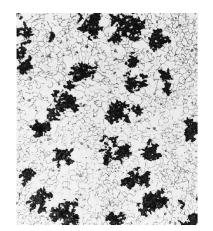
- Lots of carbides so very hard.
- Used for <u>WEAR RESISTANCE</u>.
- Virtually un-machinable. (brittle)

✓ Rolls for rolling mill

Dr. M.	Medraj	
--------	--------	--

Mech. Eng. Dept. - Concordia University

Mech321 lecture 23/18

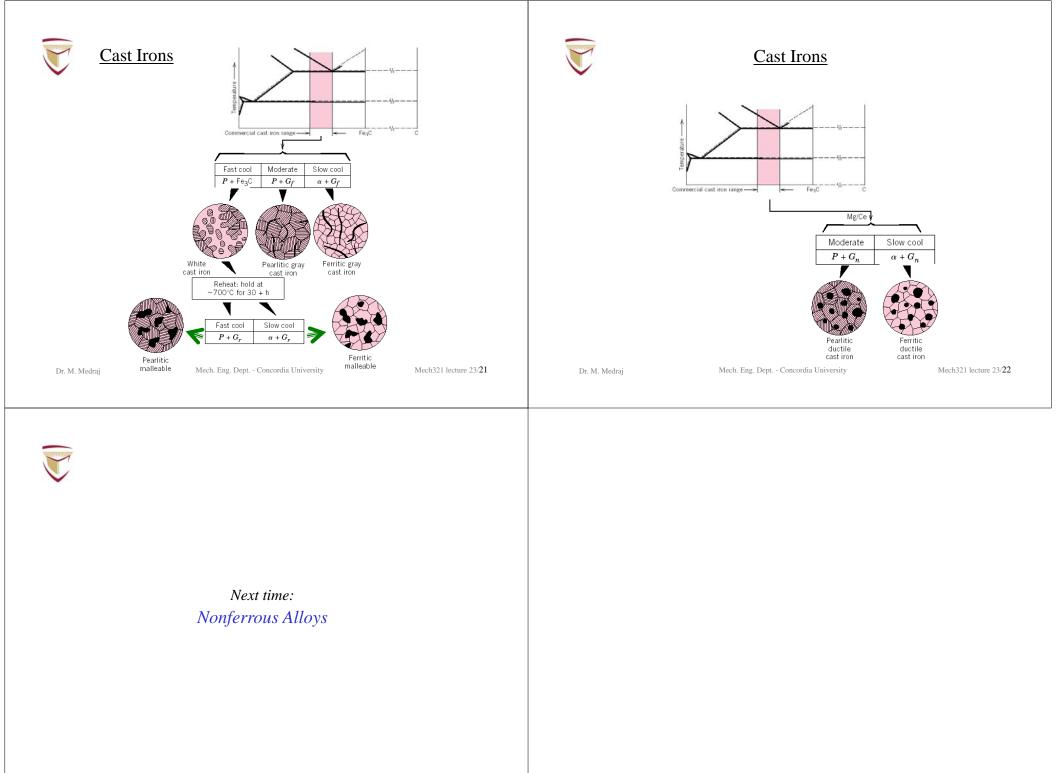


Malleable Cast Iron

• White cast iron is heat treated (≈940°C) to promote graphitization of the iron carbide into graphite rosettes (*popcorn*)

• By controlling the heat treatment and cooling can get:

- Ferritic structures
- Pearlitic structures
- Martensitic structures



V

Malleable Cast Iron

Table 12.5 Designations, Minimum Mechanical Properties, Approximate Compositions, and Typical Applications for Various Gray, Nodular, and Malleable Cast Irons

				Mechanical Properties			
Grade	UNS Number	Composition (wt%)*	Matrix Structure	Tensile Strength [MPa (kst)]	Yteld Strength [MPa (kst)]	Ductility [%EL in 50 mm (2 in.)]	Typical Applications
				Mali	eable Iron		
32510	F22200	2.3–2.7 C, 1.0–1.75 Si, <0.55 Mn	Ferrite	345 (50)	224 (32)	10	General engineering service at normal and ele- vated temperatures
45006	_	2.4–2.7 C, 1.25–1.55 Si, <0.55 Mn	Ferrite + Pearlite	448 (65)	310 (45)	6]	

Mech321 lecture 23/23