

Approximate Cost Per Unit Volume for Wrought Metals and Plastics Relative to Carbon Steel Outline Cost / Cost of Cost / Cost of Material Material Carbon Steel Carbon Steel • Introduction: Relative cost of materials Gold • Non Ferrous Alloys Mg Alloys 2-4 - Copper alloys Silver 600 Al Alloys 2-3- Alluminum and its alloys 200-250 Mo Alloys High Strength Steels 1.4 - Magnesium and its alloys Nickel Gray Cast Iron 1.2 - Titanium and its alloys Ti Alloys 20-401 Carbon Steel - Nickel and its alloys Cu Alloys 5-6 Nylons, silicon rubber 1.1-2- Superalloys 1.5-3.5 Zinc Alloys • Miscellaneous Nonferrous Alloys Plastics/Elastomers 0.2 - 1• Summary Stainless Steels 2-9 Fiber Composites Mech. Eng. Dept. - Concordia University MECH 321 lecture 24/1 Mech. Eng. Dept. - Concordia University MECH 321 lecture 24/2 Dr. M. Medraj Dr. M. Medraj **Non-Ferrous Alloys Copper Alloys** Steel & other ferrous alloys are used in very large quantities but: • Density; 8.93 Mg/m³ so alloys are heavier than steel. • have relatively high densities Specific strength not very high relatively low electrical conductivity • Good ductility, (very soft when pure). • susceptibility to corrosion in many atmospheres Corrosion resistant (some surface reactions) Relatively good fatigue, creep and wear resistance compared to Al alloys. Wrought Alloys and Cast alloys: • High electrical and thermal conductivity. Easily joined and fabricated. ✓ Copper & alloys (including brasses, bronzes) ✓ Aluminum & alloys ✓ Magnesium Strengthening: ✓ Titanium Cold-working: principle method for most alloys ✓ Nickel ✓ Solid solution:- Cu-Zn, Cu-Sn, Cu-Al, Cu-Be ✓ Lead ✓ Zinc ✓ Age-hardenable:- Cu-Zr, Cu-Be ✓ Tin ... ✓ Phase transformations:- Cu-Al

Dr. M. Medraj

Copper Alloys

Strength and hardness of copper is relatively low; to improve strength, copper is frequently alloyed

- Bronze alloy of copper and tin (typically ~ 90% Cu, 10% Sn), widely used today and in ancient times (i.e., the Bronze Age)
 - Additional bronzes include aluminum bronzes and silicon bronzes
- Brass alloy of copper and zinc (typically ~ 65% Cu, 35% Zn).
- Highest strength alloy is beryllium-copper (only about 2% Be), which can be heat treated to high strengths and used for springs
- Based on the Unified Numbering System for Metals and Alloys (UNS), which uses a five digit number preceded by the letter C.
- Includes both wrought and cast copper and its alloys
- Examples:

C10100 - 99.99% pure copper C17000 – 98% Cu, 1.7% Be (beryllium-copper) C24000 – 80% Cu, 20% Zn (brass) C52100 - 92% Cu, 8% Sn (bronze)

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 321 lecture 24/5

Copper Alloys

Brasses Cu-Zn alloys

- Several phases: α (FCC) soft, ductile, easily cold-worked.
- β ' is BCC, harder & stronger than α .
- 60-40 brass is $(\alpha + \beta')$.

Copper Alloys

Bronzes Cu + Sn, Al, Si, Ni

• Stronger than brasses and still good corrosion resistance.

• Precipitation hardenable - e.g. Cu-Be - very high strength, corrosion & wear resistant.... etc.

Table 12.6 Compositions, Mechanical Properties, and Typical Applications for Eight Copper Alloys

				Mech	anical Propert			
Alloy Name	UNS Number	UNS Number	Composition (wt%)"	Condition	Tensile Strength [MPa (ksl)]	Vield Strength [MPa (ksl)]	Ductifity [%EL in 50 mm (2 in.)]	Typical Applications
			Wrou	ght Alloys				
Electrolytic tough pitch	C11000	0.04 O	Annealed	220 (32)	69 (10)	45	Electrical wire, rivets, screening, gaskets, pans, nails, roofing	
Beryllium copper	C17200	1.9 Be, 0.20 Co	Precipitation hardened	1140-1310 (165-190)	690-860 (100-125)	4-10	Springs, bellows, firing pins, bushings, valves, diaphragms	
Cartridge brass	C26000	30 Zn	Annealed Cold-worked	300 (44)	75 (11)	68	Automotive radiator cores, ammunition	
			(H04 hard)	525 (76)	435 (63)	8	components, lamp fixtures, flashlight shells, kickplates	
Phosphor bronze,	C51000	5 Sn, 0.2 P	Annealed Cold-worked	325 (47)	130 (19)	64	Bellows, clutch disks, diaphragms, fuse	
5% A			(H04 hard)	560 (81)	515 (75)	10	clips, springs, weld- ing rods	
Copper- nickel, 30%	C71500	30 Ni	Annealed Cold-worked	380 (55)	125 (18)	36	Condenser and heat- exchanger compo-	
			(H02 hard)	515 (75)	485 (70)	15	nents, saltwater	
ai		Mech. F	ing Dent - Co	ncordia Unive	ersity		MECH 321 lecture	

Copper Alloys

Table 12.6 Compositions, Mechanical Properties, and Typical Applications for Eight Copper Alloys

	Mechanical Properties				ies		
Alloy Name	UNS Number	Composition (wt%) ^a	Condition	Tensile Strength [MPa (ksi)]	Yield Strength [MPa (ksi)]	Ductility [%EL in 50 mm (2 in.)]	Typical Applications
			Ca	st Alloys			
Leaded yel- low brass	C85400	29 Zn, 3 Pb, 1 Sn	As cast	234 (34)	83 (12)	35	Furniture hardware, radiator fittings, light fixtures, bat- tery clamps
Tin bronze	C90500	10 Sn, 2 Zn	As cast	310 (45)	152 (22)	25	Bearings, bushings, pis- ton rings, steam fit- tings, gears
Aluminum bronze	C95400	4 Fe, 11 Al	As cast	586 (85)	241 (35)	18	Bearings, gears, worms, bushings, valve seats and guards, pickling hooks

" The balance of the composition is copper.

Aluminum and Its Alloys

- Low Density: 2.7 Mg/m³ (Steel 7.87 Mg/m³)
 Pure Al is very soft and ductile but alloys of strengths of 690 MPa are possible by combining cold working, alloying, and precipitation hardening mechanisms.
- Many alloys very ductile/workable even at low temperatures (FCC).
- Gives good specific strength: σ/ρ
- Good Corrosion Resistance : Aluminium oxide film on surface protects metal.
- Also aluminum:
 - ✓ Non-toxic
 - ✓ High electrical conductivity
 - ✓ High thermal conductivity
 - ✓ Non-magnetic
 - ✓ No fatigue limit

✓ Low melting point (660°C) restricts operating temp. but facilitates casting.

✓ Low hardness/wear resistance

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 321 lecture 24/9

Designations of Wrought and Cast Al Alloys

Alloy group	Wrought code	Cast code
Aluminum ≥ 99.0% purity	1XXX	1XX.X
Copper alloy	2XXX	2XX.X
Manganese alloy	3XXX	
Silicon alloy	4XXX	4XX.X
Zinc alloy	7XXX	7XX.X
Tin alloy		8XX.X

- Properties of Al alloys are influenced by work hardening and heat treatment, so temper must be designated in addition to composition
 - This designation is attached to the 4-digit code, separated by a hyphen, to indicate treatment or no treatment
 - Temper treatments that specify strain hardening do not apply to the cast alloys

Temper Description

- F As fabricated no special treatment
- H Strain hardened (wrought aluminums)
- O Annealed to relieve strain hardening and improve ductility
 - Thermal treatment to produce stable tempers other than F, H, or O

Dr. M. Medraj

Т

Mech. Eng. Dept. - Concordia University

MECH 321 lecture 24/10

Aluminum and Its Alloys

WROUGHT ALLOYS & CASTING ALLOYS

- Heat-treatable and nonheat-treatable.
- Advanced alloys Al-Lithium

Table 12.7 Compositions, Mechanical Properties, and Typical Applications for Several Common Aluminum Alloys

				Mech	hanical Proper		
Aluminum Association Number	UNS Number	Composition (wt%)°	Condition (Temper Designation)	Tensile Strength [MPa (ksi)]	Yield Strength [MPa (ksi)]	Ductility [%EL in 50 mm (2 in.)]	Typical Applications/ Characteristics
			Wrought, Nonho	at-Treatable A	lloys		
1100 Cu incre reduces	A91100 eases stro corrosic	0.12 Cu ength, but >0.5 on resistance	Annealed (O)	90 (13)	35 (5)	35-45	Food/chemical han- dling & storage equipment, heat ex- changers, light re-
3003	A93003	0.12 Cu, 1.2 Mn, 0.1 Zn	Annealed (O)	110 (16)	40 (6)	30-40	Cooking utensils, pressure vessels and piping
5052	A95052	2.5 Mg, 0.25 Cr	Strain hardened (H32)	230 (33)	195 (28)	12-18	Aircraft fuel & oil lines, fuel tanks, ap- pliances, rivets, and
Mn or	Cr incre	eases strength	n, grain size	control			wire

Aluminum and Its Alloys

Table 12.7 Compositions, Mechanical Properties, and Typical Applications for Several Common Aluminum Alloys

				Mecl	ties		
Aluminum Association Number	UNS Number	Composition (wt%)°	Condition (Temper Designation)	Tensile Strength [MPa (ksi)]	Yield Strength [MPa (ksi)]	Ductility [%EL in 50 mm (2 in.)]	Typical Applications/ Characteristics
			Wrought, He	eat-Treatable A	lloys		
2024	A92024	4.4 Cu, 1.5 Mg, 0.6 Mn	Heat treated (T4)	470 (68)	325 (47)	20	Aircraft structures, rivets, truck wheels, screw ma- chine products
6061	A96061	1.0 Mg, 0.6 Si, 0.30 Cu, 0.20 Cr	Heat treated (T4)	240 (35)	145 (21)	22-25	Trucks, canoes, rail- road cars, furni- ture, pipelines
7075	A97075	5.6 Zn, 2.5 Mg, 1.6 Cu, 0.23 Cr	Heat treated (T6)	570 (83)	505 (73)	11	Aircraft structural parts and other highly stressed ap- plications

Aluminum and Its Alloys

Table 12.7 Compositions, Mechanical Properties, and Typical Applications for Several Common Aluminum Alloys

				Mech	ties		
Aluminum Association Number	UNS Number	Composition (wt%)°	Condition (Temper Designation)	Tensile Strength [MPa (ksi)]	Yield Strength [MPa (ksi)]	Ductility [%EL in 50 mm (2 in.)]	Typical Applications/ Characteristics
			Cast, Heat	-Treatable Alla	oys		
295.0	A02950	4.5 Cu, 1.1 Si	Heat treated (T4)	221 (32)	110 (16)	8.5	Flywheel and rear- axle housings, bu and aircraft whee crankcases
356.0	A03560	7.0 Si, 0.3 Mg	Heat treated (T6)	228 (33)	164 (24)	3.5	Aircraft pump parts automotive trans- mission cases, wa ter-cooled cylinde blocks
	T st T	4 – Solution ubstantially 6 – Solution	n heat-treate stable cond n heat-treate	ed and <u>na</u> lition ed and the	turally ag en <u>artificia</u>	<u>ed</u> to a ally aged	<u>1</u> .
De M. Madeo	:		lech Eng Dent (Concordia Unive	arcity		MECH 321 lecture 24/

Magnesium and Its Alloys

- > Very low density: 1.74 Mg/m^3 (Al: 2.7 Mg/m³)
- > HCP
- > relatively soft
- \rightarrow low E (45GPa) (but better than)
- ➢ <u>But:</u>
- Expensive,
- Difficult to cast,
- Low strength,
- Low creep, fatigue and wear resistance
- Low room temp. ductility (hcp) so cold-working limited.

> Fabricated by casting - (melts at 651° C) or hot-working (200-350°C).

> Used for weight saving applications; *Missiles, luggage, laptops, cellphones, chainsaws, cameras....*

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 321 lecture 24/14

Magnesium and Its Alloys

Table 12.8 Compositions, Mechanical Properties, and Typical Applications for Six Common Magnesium Alloys

				Mech	anical Propert	ies	
ASTM Number	UNS Number	Composition (wt%)°	Condition	Tensile Strength [MPa (ksi)]	Yield Strength [MPa (ksi)]	Ductility [%EL in 50 mm (2 in.)]	Typical Applications
			Wrought	Alloys			
AZ31B	M11311	3.0 Al, 1.0 Zn, 0.2 Mn	As extruded	262 (38)	200 (29)	15	Structures and tubing, cathodic protection
HK31A	M13310	3.0 Th, 0.6 Zr	Strain hardened, partially annealed	255 (37)	200 (29)	9	High strength to 315°C (600°F)
ZK60A	M16600	5.5 Zn, 0.45 Zr	Artificially aged	350 (51)	285 (41)	11	Forgings of maximum strength for aircraft
			Cast A	lloys			
AZ91D	M11916	9.0 Al, 0.15 Mn, 0.7 Zn	As cast	230 (33)	150 (22)	3	Die-cast parts for automobiles, luggage, and electronic devices
AM60A	M10600	6.0 Al, 0.13 Mn	As cast	220 (32)	130 (19)	6	Automotive wheels
AS41A	M10410	4.3 Al, 1.0 Si, 0.35 Mn	As cast	210 (31)	140 (20)	6	Die castings requiring good creep resistance

" The balance of the composition is magnesium.

1	141 +
12	
10	751
	9

Designation of Magnesium Alloys

For example, the alloy AZ91C-T6

• The principle alloying elements are aluminum (A), 9 percent and zinc (Z), 1 percent *(note: the numbers are rounded off)*

• The letter C, the third letter of the alphabet, indicates that this is the third alloy standardized, after A and B, which were the first and second alloys, respectively, that were standardized.

• **T6** indicates that this alloy has been solution treated and artificially aged.

• The temper of the material, indicated by the same symbols used for Al-alloys

Titanium and Its Alloys

- ✓ Medium density 4.54 Mg/m³ (steel 7.9 Mg/m³)
- \checkmark High melting point (1668°C)
- ✓ But relatively strong. $\sigma_{vs} \approx 800$ MPa (max ≈ 1100 MPa)
- ✓ Stiffer than Aluminium: 107 116 GPa vs 70 GPa but not as stiff as steel (207 GPa).
- ✓ Highly ductile
- ✓ Good corrosion resistance
- \checkmark Good strength to weight ratio
- \checkmark Expensive production due to reactivity at high temperature.

Almost all Ti alloys contain aluminum

- Al increases ductility, and

- reduces density

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University MECH 321 lecture 24/17

Titanium and Its Alloys

"Pure" titanium has lower strength, but more corrosion resistant and less expensive

Table 12.9 Compositions, Mechanical Properties, and Typical Applications for Several Common Titanium Alloys

				Average	Mechanical P	roperties	
Alloy Type	Common Name (UNS Number)	Composition (wt%)	Condition	Tensile Strength [MPa (ksi)]	Yield Strength [MPa (ksi)]	Ductility [%EL in 50 mm (2 in.)]	Typical Applications
Commercially pure	Unalloyed (R50500)	99.1 Ti	Annealed	484 (70)	414 (60)	25	Jet engine shrouds, cases and airframe skins, corrosion-resistant equipment for marine and chemical processing industries
α	Ti-5Al-2.5Sn (R54520)	5 Al, 2.5 Sn, balance Ti	Annealed	826 (120)	784 (114)	16	Gas turbine engine casings and rings; chemical processing equipment re- quiring strength to temperatures of 480°C (900°F)
Near α	Ti-8Al-1Mo- 1V (R54810)	8 Al, 1 Mo, 1 V, balance Ti	Annealed (duplex)	950 (138)	890 (129)	15	Forgings for jet engine components (compressor disks, plates, and hubs)
α - β	Ti-6Al-4V (R56400)	6 Al, 4 V, balance Ti	Annealed	947 (137)	877 (127)	14	High-strength prosthetic implants, chemical-processing equipment, air- frame structural components
α - β	Ti-6Al-6V-2Sn (R56620)	6 Al, 2 Sn, 6 V, 0.75 Cu, balance Ti	Annealed	1050 (153)	985 (143)	14	Rocket engine case airframe applica- tions and high-strength airframe structures
β	Ti-10V-2Fe-3AI	10 V, 2 Fe, 3 Al, balance Ti	Solution + aging	1223 (178)	1150 (167)	10	Best combination of high strength and toughness of any commercial tita- nium alloy: used for applications re- quiring uniformity of tensile proper- ties at surface and center locations; high-strength airframe components

Format: Titanium alloyed with 6% Aluminum, 4% Vanadium ==> Ti-6Al-4V

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 321 lecture 24/18

Nickel and Its Alloys

- ✓ Nickel: FCC (tough and ductile)
- ✓ Good high and low temperature strength, high oxidation resistance
- Highly resistant to corrosion especially alkaline.
- ✓ Highly desirable material, but extremely expensive
- ✓ Primary Nickel reserves in and New Caledonia

• Nickel is often coated or plated on some metals that are susceptible to corrosion as a protective measure.

• Monel, (65 wt% Ni - 28 wt% Cu & Fe-balance), has very high strength and is extremely corrosion resistant; it is used in pumps, valves, and other components that are in contact with some acid and petroleum solutions. (also Ni is used in stainless steels and superalloys)

• Chromium improves corrosion resistance and mechanical properties at elevated temperature \rightarrow Inconel series (*Ni-Cr alloys*)

Superallovs

- High temperature performance (strength)
- Gas turbines, steam turbines, reciprocating engines
- Hot working and casting tools and dies
- Aircraft & space vehicles
- Nuclear and chemical industries
- Iron based alloys:
 - 32% to 67% Fe. 15% to 22% Cr and 9% to 38% Ni.
 - common alloys: Incoloy series
- ✤ Cobalt based alloys:
 - 30% to 65% Co, 19% to 30% Cr and up to 35% Ni.
 - they retain their strength at high temp. but not as strong as Ni-base superalloys
- ➢ Nickel based alloys:
 - 38% to 76% Ni, up to 27% Cr and 20% Co.
 - are the most common superalloys
 - common alloys: Hastelloy, Inconel, Nimonic, Rene and Astroloy series Mech. Eng. Dept. - Concordia University

Dr. M. Medraj

Miscellaneous Nonferrous Alloys

- **Cobalt** similar in size, melting point and density to nickel
- > less susceptible to hot corrosion, but more susceptible to oxidation
- > useful for low stress, long life at high temperature
- Lead, tin and their alloys:

- > Many solders are lead-tin alloys.
- \checkmark Both are mechanically soft and weak,
- > Lead & alloys x-ray shields and storage batteries.
- \checkmark have low melting temperatures,
- \checkmark are quite resistant to many corrosion environments,
- \checkmark and have recrystallization temperatures below room temperature.

> Tin - a very thin coating on the inside of plain carbon steel cans (tin cans); this coating inhibits chemical reactions between the steel and the food products.

```
Dr. M. Medraj
```

Mech. Eng. Dept. - Concordia University

MECH 321 lecture 24/21

Miscellaneous Nonferrous Alloys

- Zinc: unalloyed zinc also is a relatively soft metal having a low melting temperature and a subambient recrystallization temperature.
- Susceptible to corrosion.
 - Galvanized steel (the zinc preferentially corrodes and protects the steel.)
- Common applications of zinc alloys include die-castings padlocks, automotive parts (door handles and grilles), and office equipment.
- Zirconium alloys are ductile and have other mechanical characteristics that are comparable to titanium alloys & austenitic stainless steels.
- Primary asset is their resistance to corrosion in a host of corrosive media, including superheated water.
- Zirconium is transparent to thermal neutrons, alloys used as cladding for uranium fuel in water-cooled nuclear reactors.
- In terms of cost, these alloys are also often the materials of choice for heat exchangers, reactor vessels, and piping systems for the chemical-processing and nuclear industries.

Mech. Eng. Dept. - Concordia University

Dr. M. Medraj

MECH 321 lecture 24/22

Nonferrous Alloys

Next Time Review for the Final