Torsion - Introduction · Torsion is a variation of shear occurring in Outline machine axles, drive shafts and twist drills • From observation, the angle of twist of the • Example shaft is proportional to the applied torque and • Torsion - introduction to the shaft length. • Torsion test $\phi \propto T$ • Torsional Failure Modes $\phi \propto L$ Plastic deformation · When subjected to torsion, every cross-section • Dislocations – introduction of a circular shaft remains plane and • Edge Dislocation undistorted, because a circular shaft is Dislocation movements axisymmetric. · Cross-sections of noncircular (nonaxisymmetric) shafts are distorted when subjected to torsion. Mech. Eng. Dept. - Concordia University MECH 321 lecture 3/1 Mech. Eng. Dept. - Concordia University Dr. M. Medraj Dr. M. Medraj **Torsion Test** Torsion - Theory Not as common in testing as tensile test. ٠ Torsion test samples (similar to tensile samples). But also used on full sized parts such as shafts, axles, drills etc. Torsion machines use an electrical motor and gear drive to apply a torque $J = \frac{1}{2}\pi c^4$ to the specimen $M_T = \frac{\tau J}{r} \rightarrow \tau = \frac{M_T r}{J}$ Shear stress is zero at centre of bar The specimen is gripped on both ends, increasing linearly to max at surface. with one end remaining stationary and M_T = Torsional moment Torsion machine the other rotated by the motor $\tau =$ shear stress Shear Strain: $\gamma = \tan \phi = \frac{r\theta}{L}$ r = radial distance from centre• Troptometers are used to measure how J = Polar moment of inertia much the specimen has been twisted. $\tau_{\rm max} = \frac{2M_T c_2}{\pi (c_2^4 - c_1^4)}$ Often tests are done on tubular cross sections

• Combining this twisting information with the applied torque, we are able to determine the mechanical properties of the specimen.

Troptometer

MECH 321 lecture 3/2

Dr. M. Medraj

 $c_2 = outer radius$

 $c_1 = inner radius$

 $J = \frac{1}{2}\pi (c_2^4 - c_1^4)$

MECH 321 lecture 3/3

Dr. M. Medraj

Torsional Failure Modes

- Ductile materials generally fail in shear. Brittle materials are weaker in tension than shear.
- When subjected to torsion, a ductile specimen breaks along a plane of **maximum shear**, i.e., a plane perpendicular to the shaft axis.

Plastic Deformation

* Why metals could be plastically deformed?

Why the plastic deformation properties could be changed to a very large degree by forging without changing the chemical composition?

• Why plastic deformation occurs at stresses that are much smaller than the theoretical strength of perfect crystals?

Plastic deformation – the force to break all bonds in the slip plane is much higher than the force needed to cause the deformation. Why?

These questions can be answered based on the idea proposed in 1934 by Taylor, Orowan and Polyani: Plastic deformation is due to the motion of a large number of

Dislocations

• Dislocations result from solidification from the melt, from mechanical work (*e.g., rolling, drawing, compressive impact, tensile or shear stress*), or from thermal stresses

- It is very difficult to prepare a dislocation-free crystal!!!
- 2 Types:

- Think of edge dislocation as an extra half-plane of atoms inserted in a crystal.
- Misalignment of atomic planes due to the extra half plane.

Described by \perp symbol.

Burger's vector (b) = magnitude + direction of lattice distortion.

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 321 lecture 3/9

Dislocations

FIGURE 2.3 Lattice defect caused by introduction of an extra half plane of atoms, A. Note symmetrical displacement of planes B, B', C, C', etc. The dislocation line is defined as the edge of the half plane, A. The Burgers circuit XCC'YX' contains a closure failure X'X. (From Guy,⁵ Elements of Physical Metallurgy, 2nd ed., Addison-Wesley, Reading, MA, 1959.)

"a" is the lattice constant

"b" is the Burgers vector

Burger's vector, b, describes magnitude and direction of Burger's circuit around section of crystal that includes a dislocation shows Burger's vector (a vector needed to close circuit) (*In perfect crystal, however, Burger's circuit closes itself*).

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 321 lecture 3/10

Caterpillar or Rug Analogy

- The caterpillar would require a large force (energy) to slide its complete body along
- it is much easier for it to move one part of its body at a time
- this analogous to the *shearing of the lattice* by movement of an edge dislocation
- another analogy is the sliding of a rug across a floor

Dr. M. Medraj

Dislocations

- dislocations are *intrinsic* defects like vacancies
- *dislocation density* is the total dislocation length/unit volume
- units: mm/mm³ or mm⁻²
 - annealed metal: 10⁵-10⁶ mm⁻²
 - deformed: $10^9-10^{10} \text{ mm}^{-2}$
- atoms above slip plane are in compression
- atoms below slip plane are in tension
- creates a *strain field* around the dislocation
- dislocations contain stored energy

Regions of compression (dark) and tension (colored) located around an edge dislocation.

MECH 321 lecture 3/13

Dislocation Interaction

- dislocations during plastic deformation
- dislocations can either *repel* or *attract* one another
- depends on orientation or *sign* (positive or negative)
- important since deformation increases dislocation density
 → work hardening
- this is a strengthening mechanism

Two extra half-planes will align and become a complete plane

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 321 lecture 3/14

Dr. M. Medraj

Theoretical vs. Experimental Mech properties

Mech. Eng. Dept. - Concordia University

TABLE 2.1	Theoretical and	Experimental	Yield Strengths in	Various	Materials ²	a di
the second se						

របស់ ខេត្តបានស្ថិត ខេត្ត	G/2π		Experimental Yield Strength		
Material	GPa	10 ⁶ psi	MPa	psi	τ_m/τ_{exp}
Silver	12.6	1.83	0.37	55	$\sim 3 \times 10^{4}$
Aluminum	11.3	1.64	0.78	115	$\sim 1 \times 10^{4}$
Copper	19.6	2.84	0.49	70	$\sim 4 \times 10^4$
Nickel	32	4.64	3.2-7.35	465-1,065	$\sim 1 \times 10^{4}$
Iron	33.9	4.92	27.5	3,990	$\sim 1 \times 10^{3}$
Molvbdenum	54.1	7.85	71.6	10,385	$\sim 8 \times 10^{2}$
Niobium	16.6	2.41	33.3	4,830	-5×10^{2}
Cadmium	9.9	1.44	0.57	85	$\sim 2 \times 10^{4}$
Magnesium (basal slip)	7	1.02	0.39	55	$\sim 2 \times 10^{4}$
Magnesium (prism slip)	7	1.02	39.2	5,685	$\sim 2 \times 10^{4}$
Titanium (prism slip)	16.9	2.45	13.7	1,985	$\sim 1 \times 10^{3}$
Beryllium (basal slip)	49.3	7.15	1.37	200	$\sim 4 \times 10^{4}$
Beryllium (prism slip)	49.3	7.15	52	7,540	$\sim 1 \times 10^{3}$

When compared to experimental shear yield strengths, common metals are 1000 to 10,000 times weaker than theory predicts.

Theoretical Shear Strength, $\tau_{TH} \approx G/2\pi$ to $\approx G/30$ depending on method.

Movement of Dislocations

Under applied shear stress, dislocations can move by breaking bonds **<u>CONSECUTIVELY</u>** (rather than simultaneously).

Requires less energy, (reason why expt. Shear strength is lower).

Deformation by dislocations movement is called <u>SLIP.</u>

• The combination of C-P plane (the slip plane) and C-P direction (the slip direction) is called a

Recall:

SLIP SYSTEMS DEPEND ON THE CRYSTAL STRUCTURE OF THE MATERIAL!

Dr. M. Medraj

<u>Slip Systems</u>

 Table 7.1
 Slip Systems for Face-Centered Cubic, Body-Centered Cubic, and Hexagonal Close-Packed Metals

Metals	Slip Plane	Slip Direction	Number of Slip Systems
	Face-Cente	red Cubic	
Cu, Al, Ni, Ag, Au	{111}	$\langle 1\overline{1}0\rangle$	12
	Body-Cente	red Cubic	
α-Fe, W, Mo	$\{110\}$	$\langle \overline{1}11 \rangle$	12
α-Fe, W	{211}	$\langle \overline{1}11 \rangle$	12
α-Fe, K	{321}	$\langle \overline{1}11 \rangle$	24
	Hexagonal C	lose-Packed	
Cd, Zn, Mg, Ti, Be	{0001}	$\langle 11\overline{2}0\rangle$	3
Ti, Mg, Zr	{1010}	$\langle 11\overline{2}0\rangle$	3
Ti, Mg	$\{10\overline{1}1\}$	$\langle 11\overline{2}0\rangle$	6

The more slip systems available, the easier it is for dislocations to move, which is why (on the average) FCC and BCC metals are more ductile than HCP metals.

number of slip systems with temperature e.g. HCP metals \rightarrow more ductile at high temperature

```
Dr. M. Medraj
```

Mech. Eng. Dept. - Concordia University

MECH 321 lecture 3/17

Movement of Dislocations

Dislocation climb involving vacancy () diffusion to edge dislocation allowing its movement to climb from plane A to plane B.

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 321 lecture 3/18

Movement of Dislocations

Can dislocations climb?

when atoms leave the dislocation line to create interstitials or to fill vacancies

or when atoms are attached to the dislocation line by creating vacancies or eliminating interstitials

Strength of a perfect Crystals

If we have a material **without** dislocations (i.e. SLIP cannot occur)!!

Is the strength closer to the theoretical value?

TABLE 2.2 Theoretical and Experimental Strengths of Dislocation-Free Crystal (Whiskers)⁶

	Theoretical Strength (G/2π)		Experimental Strength			
Material	GPa	10 ⁶ psi	GPa	10 ⁶ psi	Error	
Copper	19.1	2.77	3.0	0.44	~6	
Nickel	33.4	4.84	3.9	0.57	~8.5	
Iron	31.8	4.61	13	1.89	~2.5	
B.C	71.6	10.4	6.7	0.98	~10.5	
SIC	132.1	19.2	11	1.60	~12	
AL-O-	65.3	9.47	19	2.76	~3.5	
C.	156.0	22.6	21	3.05	~7	

MECH 321 lecture 3/19

Next time: Continue Dislocations

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 321 lecture 3/21