Outline

• Movement of Dislocations - Review
• Screw Dislocation
• Screw vs. Edge Dislocations
• Mixed Dislocations
• Observation of Dislocations
• Dislocations’ Multiplication
• Stress and Dislocation Motion
• Slip in Single Crystals
• Twining

Movement Dislocations: Review

• Bonds across slip plane break consecutively not simultaneously
 – less energy is required but with same end result.
• Dislocations allow deformation at much lower stress than in a perfect crystal.
• The movement of the dislocation requires the breaking and formation of only ONE set of bonds per step.
• Dislocations move in the close-packed directions within the close packed planes.

SCREW Dislocation:

• Crystal is "cut halfway through and then slide sideways" helical path through structure hence "screw".
• The motion of a screw dislocation can be thought of in terms of tearing a sheet of paper.

SCREW Dislocation: Movement

Because \(b \) and disl are parallel there is no set SLIP plane. Instead, screw disl move on planes with low resistance to disl movement.

Can change planes if need to:

Note that \(AB \) is parallel to \(b \).

Cross-slip of a screw dislocation xy from (a) plane A to (b) plane B to (c) plane A. Slip always occurs in direction of Burgers vector \(b \).

Generally, screw dislocations are more than edge dislocations.
SCREW Dislocation: Movement

- The motion of a screw dislocation is also a result of shear stress.
- Motion is **perpendicular** to direction of stress, rather than **parallel** (edge).
- However, the net plastic deformation of both edge and screw dislocations is the same.

Dislocations

Usually, dislocations have both an edge and a screw character; i.e., they are **mixed** dislocations:

- Slip plane
- Mixed mode here
- Pure edge here
- Pure screw here

makes up most of the dislocations encountered in real life
- **very difficult to have pure edge or pure screw dislocations**

Screw Disln vs. Edge Disln

Screw dislocations provide pure shear lattice strain only

TABLE 2.4 Characteristics of Dislocations

<table>
<thead>
<tr>
<th>Dislocation Characteristic</th>
<th>Type of Dislocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slip direction</td>
<td>Edge: Parallel to \mathbf{b}, Screw: Parallel to \mathbf{b}</td>
</tr>
<tr>
<td>Relation between dislocation line and \mathbf{b}</td>
<td>Edge: Perpendicular, Screw: Parallel</td>
</tr>
<tr>
<td>Direction of dislocation line movement relative to \mathbf{b}</td>
<td>Edge: Parallel, Screw: Perpendicular</td>
</tr>
<tr>
<td>Process by which dislocations may leave the glide plane</td>
<td>Edge: Nonconservative climb, Screw: Cross-slip</td>
</tr>
</tbody>
</table>

Mixed Dislocation and Disln LOOPS

For a dislocation loop:
- Front + back are (+ve) and (-ve) edge
- Sides are LH + RH screw

Shear stress expands loop radially (grows outwards)
Observation of Dislocations

- Dislocations have been observed by the Transition Electron Microscope (TEM)

Observation of individual dislocations in thin foil. (a) Planar arrays of dislocations in 18Cr-8Ni stainless steels (b) diagram showing position of dislocations on the guide plane in the foil.

Each disl\(^\circ\) lies along a particular plane and extends from the top to the bottom of the foil

Due to dislocations interaction similar dislocations will pile-up at barriers on SLIP planes (grain boundaries, precipitates) and cause stress concentrations.

Can we observe the SLIP step in a light optical microscope (LOM)?

Dislocation Multiplication

In order to see slip step under a LOM, it requires ~ 10\(^4\) dislocations in order to 1\(\mu\)m size.

➔ Requires many disl\(^\circ\)!

Do we have All originally present in crystal? ……..!

new dislocations are created during deformation

Disl\(^\circ\) density (cm of disl\(^\circ\)/cm\(^2\)) increases from

10\(^4\) - 10\(^5\) → 10\(^{11}\)-10\(^{12}\)

annealed cold-worked (heavily deformed)

A widely accepted mechanism for disl\(^\circ\) multiplication is

FRANK-READ Source

- Segment of disl\(^\circ\) is pinned (by other disl\(^\circ\) or ppts/foreign atoms) Shear stress causes bowing out of segment.
- Curves round on itself; eventually meets itself form Dislocation LOOP and Segment.
- LOOP moves out radially.
- Segment can produce another loop if maintained.

Frank-Read source for dislocation multiplication

A-B is pinned segment

Shear stress causes bowing out of disl\(^\circ\) line between A and B

Instability reached when:

\[\tau = \frac{Gb}{R} \]

At C-C' there are screw disl\(^\circ\) of opposite sign. Annihilate each other.

- LOOP moves out radially.
- Segment can produce another loop

A-B segment can produce another disl\(^\circ\) loop if shear stress is maintained. First loop moves out causing slip
Frank-Read source for dislocation multiplication

![Silicon crystal](image)

FIGURE 2.30 Frank-Read source. (a) Photomicrograph in silicon crystal. (From Dush; reprinted with permission of General Electric Co.) Dislocation multiplication by double cross-slip mechanism. (From Low and Guirard; reprinted with permission from Low, Acta Met. 7 (1959), Pergamon Press, Elmsford, NY.)

STRESS AND DISLOCATION MOTION

- Crystals slip due to a resolved shear stress, τ_R.
- Applied tension can produce such a stress.

Applied tensile stress:

$$\sigma = \frac{F}{A}$$

Resolved shear stress:

$$\tau_R = \frac{F_s}{A_S}$$

Relation between σ and τ_R

$$\tau_R = \sigma \cos \lambda \cos \phi$$

Magnitude depends on applied stress, as well as its orientation with respect to both the slip plane and slip direction.

SLIP IN SINGLE CRYSTAL

- So, even if an applied stress is purely tensile, there are shear components to it in directions at all but the parallel and perpendicular directions

$$\tau_R = \sigma \cos \lambda \cos \phi$$

(often λ and $\phi \neq 90^\circ$ i.e. slip direction, slip plane normal and tensile axis are not usually in same plane).

Several slip systems exist in a crystal.

τ_R varies depending on ϕ and λ. System with maximum value of τ_R is one on which slip is

$$\tau_R(\text{Max}) = \sigma (\cos \lambda \cos \phi)_{\text{Max}}$$

SLIP IN SINGLE CRYSTAL

When σ sufficiently high, τ_R reaches τ_{CRSS} (critical resolved shear stress – this is the minimum stress that will cause slip to start) and then slip starts; i.e. yielding begins in that crystal.

$$\sigma_y = \frac{\tau_{\text{CRSS}}}{(\cos \lambda \cos \phi)_{\text{Max}}}$$

Maximum value of $(\cos \lambda \times \cos \phi)$ is 0.5 so therefore:

$$\sigma_y = 2\tau_{\text{CRSS}}$$

Other slip systems may then start to operate (especially as the crystal rotates towards tensile axis).
CRITICAL RESOLVED SHEAR STRESS

- Condition for dislocation motion:
 - \(\tau_R > \tau_{CRSS} \)

- Crystal orientation can make it easy or hard to move disl.
 - Typically, \(10^{-4} \text{ G} \) to \(10^{-2} \text{ G} \)

- \(\tau_R = \sigma \cos \lambda \cos \phi \)

- Slip planes & directions change from one crystal to another.
 - \(\tau_R \) will vary from one crystal to another.
 - The crystal with the largest \(\tau_R \) yields first.
 - Other (less favorably oriented) crystals yield later.

- As grains do not split from each other during deformation, they must deform together. Accommodate each other’s shape change.
 - Puts CONSTRAINT onto deformation.

- Higher stress is required.

DISL. MOTION IN POLYCRYSTALS

- During deformation, coherency is maintained at grain boundaries
 - As mentioned before, grain boundaries do not rip apart, rather they remain together during deformation.

- This causes a level of constraint in the grains, as each grain’s shape is formed by the shape of its adjacent neighbors.
 - Most prevalent is the fact that grains will elongate along the direction of deformation

- Twinning, involving the formation of an atomic mirror image (i.e., a "twin") on the opposite side of the twinning plane: (a) before, and (b) after twinning

- Copper 173X
Twinning

- Displacement magnitude in the twin region is proportional to the atom’s distance from the twin plane
- takes place along defined planes and directions depending upon the system.
 - *Ex: BCC twinning occurs on the (112)[111] system

Twinning

- All parts have the same crystal orientation
- Atomic displacement is less than interatomic spacing
 - displacements take place in exact atomic spacings

Properties of Twinning

- occurs in metals with BCC or HCP crystal structure
 - occurs at low temperatures and high rates of shear loading (shock loading)
 - conditions in which there are few present slip systems (restricting the possibility of slip)
- amount of deformation when compared with slip.

Next time:
Strengthening Mechanisms