

Strength of Aligned Cont. Fiber Composites

Matrix) Same strain Fiber

Matrix fails first

Composite will fail at lower fracture strain

Brittle matrices

So, either <

eg. epoxies *<i>→*Ductile matrix Or, fiber fails first

eg. thermoplastic polymer

If we assume that strain-to-failure of fiber is less than strain-to-failure of matrix as is most common: i.e. $\varepsilon_f^* < \varepsilon_m^*$

Then we can estimate the longitudinal strength of the composite as:

 $\sigma_{cl}^* = \sigma_m(1 - V_f) + \sigma_f^* V_f$ Where σ_m is the stress in the matrix when the fibers fail.

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 321 Lecture 7/13

Transverse Strength

Fiber-Matrix interface

- The transverse strength of unidirectional composites is usually very low.
- Fibers can actually act as rather than as reinforcements.
- Transverse strength can be approximated as the *matrix strength* in many cases.

	Longitudinal Tensile	Transverse Tensile	
Material	Strength (MPa)	Strength (MPa)	The Fiber Content for
Glass-Polyester	700	20	Each is Approximately
Carbon (High Modulus)-Epoxy	1000	35	50 V01%
Kevlar-Epoxy	1200	20	

Typical Longitudinal and Transverse Tensile Strengths for three Unidirectional Fiber-Reinforced Composites.

```
Dr. M. Medraj
```

Mech. Eng. Dept. - Concordia University

MECH 321 Lecture 7/14

Discontinuous & Aligned Fiber Composites

Reinforcement efficiency is lower than that for continuous fibers but the composites are common for

- Modulus of elasticity can be up to of continuous fiber composite

- Tensile strength can be up to of continuous fiber composite
 - when $\ell > \ell_{a}$, the longitudinal strength, σ_{ad}^{*} is given by :

$$\sigma_{\rm cd}^* = \sigma_{\rm f}^* V_f \left(1 - \frac{\ell_c}{2\ell} \right) + \sigma_m^{\prime} \left(1 - V_f \right)$$

where σ_{f}^{*} and σ_{u}^{*} represent the fiber fracture strength and the matrix stress at fiber failure respectively.

If the fiber length is less than the critical length, $\ell < \ell_o$, then :

where. d = fiber diameter $\tau_c = the$ of either **fiber** – **matrix** bond strength or matrix shear strength

Discontinuous & Randomly Oriented Fiber Composites

When fiber orientation is random and the fibers are short, a "RoM" expression is used for the elastic modulus using an factor, K (which is less than unity- usually between 0.1 - 0.6)).

$E_{cd} = K E_f V_f + E_m V_m$

Fiber Orientation	Stress Direction	Reinforcement Efficiency
All fibers parallel	Parallel to fibers	1
an exercised of concentration - Added Electronics	Perpendicular to fibers	0
Fibers randomly and uniformly distributed within a specific plane	Any direction in the plane of the fibers	38
Fibers randomly and uniformly distributed within three dimensions in space	Any direction	1 5

MECH 321 Lecture 7/19