<u>Outline</u>

- Failure Introduction
- Safety factor
- Types of failure
 - Ductile fracture
 - Brittle fracture
- Fractography
- Principles of fracture mechanics
- Stress concentration and,
- Griffith theory

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

niversity

Failure and Fracture

So, Failure sometimes takes place!!!.

Why does it occur?

What actually happens during fracture?

How can we prevent it?

Engineer should anticipate & plan for possible failure, and if failure does occur find out why and prevent re-occurrence.

Failure and Fracture

- failure of engineering materials is an undesirable occurrence!!
 - can lead to loss of human life
 - economic losses
- prevention is through good design and materials selection

Death 88 people

failure of an O-ring seal (polymer)

Excessive

wear on

stabilizer

jackscrew

Challenger (1986) Dr. M. Medraj

MECH 321 Lecture 8/2

Design Strength and Safety Factors

Mech. Eng. Dept. - Concordia University

Uncertainties occur in magnitudes of design loads due to inaccuracies in load calculations and in mechanical properties

> Design allowances are made to avoid potential failure using a design stress σ_d

> For static loading and ductile materials, the calculated stress level σ_c and <u>design factor</u>, N' are used

$$\sigma_{\rm d} = {\rm N}' \sigma_{\rm c}$$

where $\sigma_v \ge \sigma_d$ and N' > 1

>A <u>safe</u> working stress may be assigned σ_w based on the yield stress:

$$\sigma_w = \frac{\sigma_y}{N}$$
 where N is the

MECH 321 Lecture 8/1

Dr. M. Medraj

Types of Failure

- Most fundamental types of failure are *ductile* and *brittle*
- Also have impact, fatigue and creep rupture
- Fracture involves crack initiation and propagation under an applied stress
- Cracks may exist but they are and do not propagate under the particular loading conditions

Fracture Modes

Brittle

Particles serve as void nucleation

Cup & cone

Dr. M. Medraj

sites.

Ductile "Cup and Cone" Fracture

Cup and cone ductile fracture is common and includes:

- due to local plastic instability
- microvoid formation (fracture initiation)
- microvoid coalescence
- final shear failure forming shear lips
- Formation of classical *dimples* on fracture • surface:
 - equiaxed dimples
 - elongated in shear region

(a) Equiaxed dimples

Dr. M. Medraj

(b) Elongated due to shear

Brittle Fracture

Intergranular

4 mm

304 S. Steel (metal)

Mech. Eng. Dept. - Concordia University

MECH 321 Lecture 8/9

Brittle Fracture

- No deformation prior to crack initiation
- Crack initiates at a *defect or flaw*
- Fracture propagates perpendicular to load application
- Fracture surface has characteristic pattern
 - steel plates contain chevrons which point back to fracture origin
 - alternatively, have radial (fanlike) ridges emanating from fracture origin
 - or very smooth surface as in glasses or ceramics

FIGURE 8.5 (a) Photograph showing V-shaped "chevron" marking

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 321 Lecture 8/10

Brittle fracture mode is by breaking of atomic bonds along particular crystallographic planes

- cleavage and *transgranular* as it passes through the grains of the material (..... grains)
- *intergranular* or along grain boundaries due to weakening or *embrittlement of grain* boundaries (..... grains)

Polypropylene (polymer)

316 S. Steel (metal)

Al₂O₃ (ceramic)

Dr. M. Medraj

SEM Fractograph of ductile cast iron shows a transgranular fracture surface.

SEM Fractograph of an intergranular fracture surface.

Mech. Eng. Dept. - Concordia University

MECH 321 Lecture 8/11

Principles of Fracture Mechanics

- Quantitative study of failure is called *fracture mechanics*
- Fracture mechanics is the relationship between materials properties, stress, crack-producing flaws and mechanisms of crack propagation
- The aim is: "design to prevent structural failure"

Quantify relationships between:

- ✓ material properties
- ✓ stress level
- ✓ presence of cracks/defects in material
- ✓ types of crack-propagating mechanisms

Intention is to allow better design, only works well if we fracture and the above inter-relationships and material's limitations.

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

MECH 321 Lecture 8/13

Stress Concentrations

- Fracture strength is a function of cohesive forces holding atoms together.
- Theoretical cohesive strength of a brittle, elastic material is ~E/10
- E/100 to E/10.000
- Griffith (*in 1920s*) proposed that this difference is due to microscopic *flaws* amplifying the local stress and producing a stress concentration

Local increment in stress is a *stress raiser* (.....)

```
Dr. M. Medraj
```

Mech. Eng. Dept. - Concordia University

MECH 321 Lecture 8/14

Where ρ_t is the radius of the crack tip and *a* is the length of a **surface** crack or half the length of an internal crack.

where σ_0 is the nominal applied stress and $\rho_{\rm t}$ is the radius of curvature of the crack tip

✓ If (a/ρ_t) is very large – the crack is

$$\sigma_m \approx 2\sigma_o \left(\frac{a}{\rho_t}\right)^{1/2}$$

✓ stress concentration factor is $K_t = \sigma_m / \sigma_o$:

$$K_t = 2 \left(\frac{a}{\rho_t}\right)^{1/2}$$

Engineering Fracture Design

Theoretical Stress Concentrations

Griffith Theory of Brittle Fracture

Griffith proposed that there is a **population of defects** in all brittle materials of various sizes, shapes and orientations. When an applied stress creates a **concentrated stress** at one of these defects which is higher than the cohesive strength then the defect or crack <u>propagates</u> and <u>fracture occurs</u>.

- During crack propagation *elastic strain energy* is released.
- Fracture creates new surfaces which raise the *surface energy*.
- Griffith performed balance between two energies and derived a critical stress σ_c for propagation of an elliptical crack.

Griffith Theory of Brittle Fracture

If the change in elastic strain energy due to crack extension is higher than the energy required to create new crack surfaces, **crack propagation** will occur

$$\sigma_c = \left(\frac{2E\gamma_s}{\pi a}\right)^{1/2} \text{(Griffith Equation)}$$

where,

E = elastic modulus

 γ_s = specific surface energy (*energy to break bonds/unit area*)

a = one half of the length of an elliptical internal crack (2a)

Dr. M. Medraj

MECH 321 Lecture 8/19

Dr. M. Medraj

