Question 1

Derive the force equations for F, N, F_{s}, and F_{n} as functions of cutting and thrust forces using Merchant's circle.

Question 2

A 200 mm long, 75 mm diameter titanium alloy rod is being reduced in diameter to 6.5 mm by turning on a lathe. The spindle rotates at 400 rpm , and the tool is traveling at an axial velocity of $250 \mathrm{~mm} / \mathrm{min}$. Calculate the cutting speed, material removal rate, time of cut, power required and cutting force. (hint: the specific energy of titanium ranges from 3.0 to $4.1 \mathrm{~W} . \mathrm{s} / \mathrm{mm}^{3}$)

Question 3

In a surface grinding operation performed on hardened plain carbon steel, the grinding wheel has a diameter $=200 \mathrm{~mm}$ and width $=25 \mathrm{~mm}$. The wheel rotates at $2400 \mathrm{rev} / \mathrm{min}$, with a depth of cut (infeed) $=0.05 \mathrm{~mm} /$ pass and a cross-feed $=3.50 \mathrm{~mm}$. The reciprocating speed of the work is $6 \mathrm{~m} / \mathrm{min}$, and the operation is performed dry. Determine: (a) the length of contact between the wheel and the work, (b) the volume rate of metal removed. (c) If $C=0.64$ active grits $/ \mathrm{mm}^{2}$, estimate the number of chips formed per unit time. (d) What is the average volume per chip? (e) If the tangential cutting force on the work $=30 \mathrm{~N}$, compute the specific energy in this operation?

Question 4

A slab-milling operation is being carried out on a 30 in. long, 6 in. wide high strength steel block at a feed of 0.01 in./tooth and a depth of cut of 0.15 in . The cutter has a diameter of 3 in. has eight straight cutting teeth, and rotates at 150 rpm. Calculate the material removal rate and the cutting time, and estimate the power required.

Question 5:

An orthogonal cutting operation is being carried out under the following conditions: depth of cut $=$ 0.15 mm , width of cut $=5 \mathrm{~mm}$, chip thickness $=0.2 \mathrm{~mm}$, cutting speed $=2 \mathrm{~m} / \mathrm{s}$, rake angle $=15^{\circ}$, cutting force $=500 \mathrm{~N}$, and thrust force $=200 \mathrm{~N}$. Calculate the percentage of the total energy that is dissipated in the shear plane during cutting.

Question 6:

i) A series of turning tests are performed to determine the parameters n, m, and K in the expanded version of the Taylor's equation. The following data were obtained during the tests: (1) $v=2.0 \mathrm{~m} / \mathrm{s}, f=0.20$ $\mathrm{mm} / \mathrm{rev}, T=12 \mathrm{~min}$; (2) $v=1.5 \mathrm{~m} / \mathrm{s}, f=0.20 \mathrm{~mm} / \mathrm{rev}, T=40 \mathrm{~min}$; and (3) $v=2.0 \mathrm{~m} / \mathrm{s}, f=0.3 \mathrm{~mm} / \mathrm{rev}$, $T=10 \mathrm{~min}$. (a) Determine n, m, and K. (b) Using your equation, compute the tool life when $v=1.5 \mathrm{~m} / \mathrm{s}$ and $f=0.3 \mathrm{~mm} / \mathrm{rev}$.
ii) Using the Taylor equation for tool wear and letting $n=0.4$, calculate the percentage increase in tool life if the cutting speed is reduced by (a) 20% and (b) 50%.

Question 7:

A gun-drilling operation is used to drill a 7/16-in diameter hole to a certain depth. It takes 4.5 minutes to perform the drilling operation using high pressure fluid delivery of coolant to the drill point. The cutting conditions are: $\mathrm{N}=3000 \mathrm{rev} / \mathrm{min}$ at a feed $=0.002 \mathrm{in} / \mathrm{rev}$. In order to improve the surface finish in the hole, it has been decided to increase the speed by 20% and decrease the feed by 25%. How long will it take to perform the operation at the new cutting conditions?

