

Machining Types • Turning (a) Straight turning (b) Cutting off • Drilling Outline • Milling • Boring Tool Introduction Too • Shaping - Cutting terminology • Planing (c) Slab milling (d) End milling - Cutting principles • Broaching Cutter • Cutting Geometry • Filing • Machining Parameters • Sawing End mill -• Machining forces and power • Grinding • Cutting Model • Reaming • Tapping • Honing Examples of cutting processes Mech 421/6511 lecture 19/1 Mech 421/6511 lecture 19/2 Mech. Eng. Dept. - Concordia University Mech. Eng. Dept. - Concordia University Dr. M. Medraj Dr. M. Medraj

Why Machining is Important

- Variety of work materials can be machined
 - Most frequently applied to metals
- Variety of part shapes and special geometry features possible, such as:
 - Screw threads
 - Accurate round holes
 - Very straight edges and surfaces
- Good dimensional accuracy and surface finish

Disadvantages of Machining

- Wasteful of material
 - Chips generated in machining are wasted material, at least in the unit operation
- Time consuming
 - A machining operation generally takes more time to shape a given part than alternative shaping processes, such as casting, powder metallurgy, or forming

Machining Tools

Mech. Eng. Dept. - Concordia University

Most modern cutting tool materials are ceramic or composite materials designed to be **very hard**.

1. Single-Point Tools

Dr. M. Medraj

- One cutting edge
- Turning uses single point tools
- Point is usually rounded to form a nose radius
- 2. Multiple Cutting Edge Tools
 - More than one cutting edge
 - Motion relative to work usually achieved by rotating
 - *Drilling* and *milling* use rotating multiple cutting edge tools.

Single point

Multiple point

Machining Terminology

- \succ Speed surface cutting speed (v)
- Feed advance of tool through the part
- Depth of cut depth of tool into part
- Rake face tool's leading edge
- Rake angle slant angle of tool's leading edge (α)
- Flank following edge of cutting tool
- Relief angle angle of tool's following edge above part surface

Rough surface Chip Rake angle Tool Flank Relief or clearance angle Shear plane Negative Cutting tool

Machining Terminology

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

rake angle

Cutting edge

Mech 421/6511 lecture 19/5

Relief angle

Cutting Conditions

Note:

- Primary cutting due to speed
- Lateral motion of tool is feed
- Tool penetration is depth of cut

The three together form the material removal rate (*MRR*):

 $\mathbf{MRR} = \mathbf{v} \mathbf{f} \mathbf{d}$

with units of (in/min)(in/rev)(in) = in³/min/rev (or vol/min-rev)

Types of cuts:

Roughing:	feeds of 0.015 - 0.05 in/rev	depths of 0.1 – 0.75 in
Finishing:	feeds of 0.005 - 0.015 in/rev	depths of 0.03 – 0.075 in

Dr. M. Medraj

Dr. M. Medraj

А

Cutting Geometry

Segmented chip Note from the triangles in (c) that the shear strain (γ) can be estimated as $\gamma = AC/BD = (DC + AD)/BD = tan(\phi - \alpha) + \cot \phi$ Tool Irregular súrface due to chip segmentation Thus, if know γ ts of plate (a) and α , can Continuous chip determine ϕ . and given ϕ and α , can Tool determine γ . Particle of BUE on new surface (c) Mech 421/6511 lecture 19/9 Mech. Eng. Dept. - Concordia University Dr. M. Medraj Dr. M. Medraj

Cutting Force and Power

- Power requirements must be known to select a machine tool with enough power
- Data on cutting forces is required
 - Machine tools can be designed to avoid excessive distortion, maintain dimensional tolerances
 - Determine in advance whether the workpiece is capable of withstanding the cutting forces without excessive distortion

Forces in Two-Dimensional Cutting

Forces acting on a cutting tool in twodimensional cutting. Note that the resultant force, *R*, must be colinear to balance the forces.

- Cutting force, F_c
- Thrust force, F_t
- F_c and F_t produce resultant force R
- R can be resolved into two components on tool face
 - Friction force, $F = R \sin \beta$
 - Normal force, $N = R \cos \beta$
 - $-\mu = F/N$
- R is balanced by shear force, F_s , and a normal force, F_n , along the shear plane

Dr. M. Medraj

Force Calculation with Merchant's Force Circle

Cutting Forces Given Shear Strength

Letting τ = shear strength, we can derive the following equations for the cutting and thrust forces:

$$F_{s} = \tau A_{s}$$

$$F_{c} = F_{s} \cos (\beta - \alpha) / [\cos (\phi + \beta - \alpha)]$$

$$F_{t} = F_{s} \sin (\beta - \alpha) / [\cos (\phi + \beta - \alpha)]$$
The other forces can be determined from the equations on the previous slide.
$$F_{t} = F_{s} \frac{\beta - \alpha}{\beta - \alpha}$$

Cutting Forces

Since R = R' = R'', we can get the force balance equations:

$$\begin{split} F &= F_c \sin \alpha + F_t \cos \alpha \qquad F = \text{friction force; } N = \text{normal to chip force} \\ N &= F_c \cos \alpha - F_t \sin \alpha \qquad F_c = \text{cutting force; } F_t = \text{thrust force} \\ F_s &= F_c \cos \phi - F_t \sin \phi \qquad F_s = \text{shear force; } F_n = \text{normal to shear plane force} \\ F_n &= F_c \sin \phi + F_t \cos \phi \end{split}$$

Merchant Equations

Combining the equations from the previous slides:

 $\tau = (F_c \cos \phi - F_t \sin \phi)/(t_o w/\sin \phi)$ Merchant equation

The most likely shear angle will minimize the energy. Applying $d\tau/d\phi = 0$ gives:

 $\phi = 45^{\circ} + \alpha/2 - \beta/2 \quad \textit{Merchant relation}$

What does the Merchant relation indicate?

- increase in friction angle <u>decreases</u> shear angle

- increase in rake angle *increases* shear angle

If we **increase** the shear angle, we **decrease** the tool force and power requirements!

Dr. M. Medraj

Merchant Equations

- Higher shear plane angle means smaller shear plane which means lower shear force
- Result: lower cutting forces, power, temperature, all of which mean easier machining

Effect of shear plane angle ϕ : (a) higher ϕ with a resulting lower shear plane area; (b) smaller ϕ with a corresponding larger shear plane area. Note that the rake angle is larger in (a), which tends to increase shear angle according to the Merchant equation

```
Dr. M. Medraj
```

Mech. Eng. Dept. - Concordia University

Cutting Models

The *orthogonal* model for turning approximates the complex shearing process:

Cutting Power

Power is force times speed:

$$P = F_c v$$
 (ft-lb/min)

The cutting horsepower is

$$hp_c = F_c v/33,000$$
 (hp)

The unit horsepower is

 $hp_u = hp_c/MRR$

energy per unit volume units?

Due to efficiency losses (E about 90%), the gross hp required is

 $hp_g = hp_c/E$

Mech 421/6511 lecture 19/17

Cutting Energy

Specific energy is

$$U = F_c v/(v t_o w) = F_c/(t_o w)$$
 (in-lb/in³)

The table shown contains power and specific energy ratings for several work materials at a chip thickness of 0.01 in.

		Unit Horse.				Chip thickness before cut to (mm)									
Material	Hardness, Brinell	power, hp _u hp/(in. ³ /min)	Specific inlb/in.3	Energy, U (N-m/mm ³)	Г	0.125	0.25	0.38	0.50	0.63	0.75	0.88	1.0	1.25	
Carbon steel	150-200 201-250 251-300	0.6 0.8 1.0	240,000 320,000 400,000	(1.6) (2.2) (2.8)	1.6 1.4										
Alloy steels	200-250 251-300 301-350 351-400	0.8 1.0 1.3 1.6	320,000 400,000 520,000 640,000	(2.2) (2.8) (3.6) (4.4)	0.1 factor	/	<								
Cast irons	125-175 175-250	0.4 0.6	160,000 240,000	(1.1) (1.6)	8.0 put					-	_	_			
Stainless steel	150-250	1.0	400,000	(2.8)	0.6										
Aluminum Aluminum alloys	50-100 100-150	0.25	100,000 120,000	(0.7) (0.8)	0.4	For	oth	er c	hip	thicl	snes	ses,	apply		
Copper (pure) Brass Bronze	100-150 100-150	0.7 0.8 0.8	280,000 320,000 320,000	(1.9) (2.2) (2.2)	0.2-	this	s ng	ure t	o ge	tac	orrec	cuon	Tactor	•	
Magnesium alloys	50-100	0.15	60,000	(0.4)	1.00	0.005	0.010	0.015	0.020	0.025	0.030		0.040	0.050	

Cutting Temperature

- Approximately 98% of the energy in machining is converted into heat
- This can cause temperatures to be very high at the tool-chip
- The remaining energy (about 2%) is retained as elastic energy in the chip
- Several analytical methods to calculate cutting temperature
- Method by N. Cook derived from dimensional analysis using experimental data for various work materials

 $\Delta T = \frac{0.4U}{\rho_c} \left(\frac{vt_o}{K}\right)^{0.333}$

where ΔT = temperature rise at tool-chip interface; U = specific energy; ρ_C = specific heat; K = thermal diffusivity

- Experimental methods can be used to measure temperatures in machining
- Most frequently used technique is the *tool-chip thermocouple*
- Using this method, **K. J. Trigger** determined the speed-temperature relationship to be of the form:

 $T = K v^m$ where T = measured tool-chip interface temperature

Dr. M. Me	edraj
-----------	-------

Mech. Eng. Dept. - Concordia University

Mech 421/6511 lecture 19/21

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

Mech 421/6511 lecture 19/22

Next time: Continue Machining