

Grinding

FIGURE 9.7 (*Kalpakjian*) Variables in surface grinding. In actual grinding, the wheel depth of cut *d*, and contact length, *l*, are much smaller than the wheel diameter, *D*. The dimension *t* is called the *grain depth of cut*.

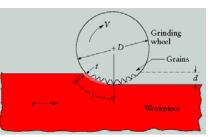


FIGURE 9.6 (*Kalpakjian*) Grinding chip being produced by a single abrasive grain: (A) chip, (B) workpiece, (C) abrasive grain.

Note the large negative rake angle of the grain, the low shear angle, and the small size of the chip.

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

Outline

• Grinding

Tool Life
Tool Materials
Tool Geometry
Cutting Fluids

Mech 421/6511 lecture 21/1

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

Mech 421/6511 lecture 21/2

Grinding

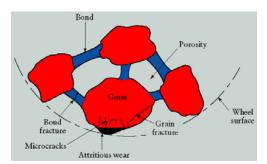
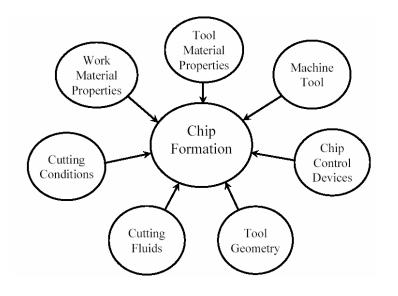


FIGURE 9.1 (*Kalpakjian*) Schematic illustration of a physical model of a grinding wheel, showing its structure and wear and fracture patterns.

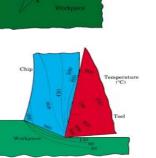
Conventional abrasives


- Aluminum oxide
- Silicon carbide

Superabrasives

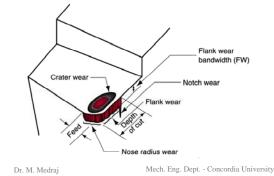
- Cubic boron nitride
- Diamond

Factors Influencing the Chip Formation Process


Dr. M. Medraj

Tool Life: Wear and Failure

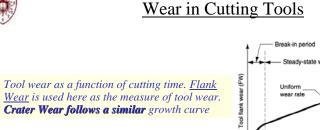
- Cutting tools subjected to ٠
 - High forces
 - High temperatures
 - Sliding of the chip along the rake face
 - Sliding of the tool along the freshly cut surface
- Fracture failure
 - *Cutting force becomes excessive and/or dynamic, leading to brittle fracture*
- *Temperature failure* ٠
 - Cutting temperature is too high for the tool material
- Gradual wear •
 - Gradual wearing of the cutting tool
- Induce tool wear affects:
 - Tool life, Surface quality and Dimensional accuracy
 - Economics of cutting operations


Dr. M. Medraj

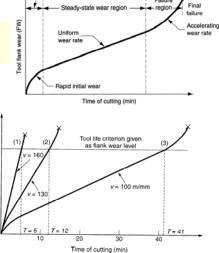
Preferred Mode of Tool Failure: Gradual Wear

- Fracture and temperature failures are failures
- Gradual wear is preferred because it leads to the longest possible ٠ use of the tool
- Gradual wear occurs at two locations on a tool: •
 - wear occurs on top rake face
 - wear occurs on flank (side of tool)

Crater wear


Mech 421/6511 lecture 21/6

Mech. Eng. Dept. - Concordia University


Mech 421/6511 lecture 21/5

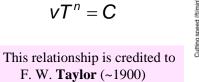
Failure

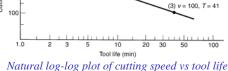
Effect of cutting speed on tool flank wear for three cutting speeds, using a tool life criterion of **0.50 mm** flank wear

Taylor Tool Life Equation

400

200


160


130

(mim)

life

Tool

(1) v = 160, T = 5

(2) v = 130, T = 12

m/min

where v = cutting speed; T = tool life; and *n* and *C* are parameters that depend on feed, depth of cut, work material, tooling material, and the tool life criterion used

- *n* is the slope of the plot
- *C* is the intercept on the speed axis

100 20 10 5000 10 000 100 300 1000

Cutting speed (ft/min)

Dr. M. Medraj

€^{0.50 m}

Mech 421/6511 lecture 21/7

Dr. M. Medraj

Taylor's Equation

• Generalized Taylor's Equation

 $vT^n f^m d^p = C$

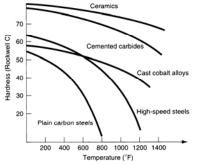
- In practice,
 - Complete failure of cutting edge
 - Visual inspection
 - Finger nail testing
 - Sound
 - Power consumption
 - Work piece count or Cumulative time

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

Mech 421/6511 lecture 21/9

Tool Materials


- Tool failure modes identify the important properties that a tool material should possess:
 - to avoid fracture failure
 - ability to retain hardness at high temperatures

- - hardness is the most important property to resist abrasive wear

✓ Plain carbon steel shows a rapid loss of hardness as temperature increases.

✓ High speed steel is substantially better

✓ cemented carbides and ceramics are significantly harder at elevated temperatures.

Typical hot hardness for selected tool materials

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

High Speed Steel (HSS)

- Highly alloyed tool steel capable of maintaining hardness at elevated temperatures better than high carbon and low alloy steels
- One of the most important cutting tool materials
- Especially suited to applications involving complicated tool geometries, such as drills, taps, milling cutters, and broaches
- Two basic types (AISI)
 - 1. Tungsten-type, designated T- grades
 - 2. Molybdenum-type, designated M-grades
- Typical composition:
 - Grade T1: 18% W, 4% Cr, 1% V, and 0.9% C

Cemented Carbides

- Class of hard tool material based on tungsten carbide (WC) using powder metallurgy techniques with cobalt (Co) as the binder
- High compressive strength but low-to-moderate tensile strength
- High hardness (90 to 95 HRA)
- Good hot hardness
- Good wear resistance
- High thermal conductivity
- High elastic modulus 600×10^3 MPa (90×10^6 lb/in²)
- Toughness than high speed steel
 - Two basic types:
 - 1. Non-steel cutting grades only WC-Co

2. Steel cutting grades - TiC and TaC added to WC-Co

Mech 421/6511 lecture 21/10

Dr. M. Medraj

Non-steel Cutting Carbide Grades

- Used for nonferrous metals and gray cast iron
- Properties determined by grain size and cobalt content
 - As grain size, hardness and hot hardness, but toughness
 - As cobalt content increases, toughness improves at the expense of hardness and wear resistance

Steel Cutting Carbide Grades

- Used for low carbon, stainless, and other alloy steels
 - For these grades, TiC and/or TaC are substituted for some of the WC
 - This composition increases <u>crater wear resistance</u> for steel cutting, but adversely affects <u>flank wear resistance</u> for non-steel cutting applications

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

Mech 421/6511 lecture 21/13

Cermets

- Combinations of TiC, TiN, and titanium carbonitride (TiCN), with nickel and/or molybdenum as binders.
- Some chemistries are more complex
- Applications: high speed finishing and semifinishing of steels, stainless steels, and cast irons
 - Higher speeds and lower feeds than steel-cutting carbide grades
 - Better finish achieved, often eliminating need for grinding

Coated Carbides

- Cemented carbide insert coated with one or more thin layers of wear resistant materials, such as TiC, TiN, and/or Al₂O₃
- Coating applied by CVD or PVD
- Coating thickness = $2.5 13 \mu m$ (0.0001 to 0.0005 in)
- Applications: cast irons and steels in turning and milling operations
 - Best applied at high speeds where dynamic force and thermal shock are minimal

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

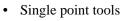
Mech 421/6511 lecture 21/14

Ceramics

- Primarily fine-grained Al₂O₃, pressed and sintered at high pressures and temperatures into insert form with no binder
- Applications: high speed turning of cast iron and steel
- Not recommended for heavy interrupted cuts (e.g. rough milling) due to low toughness

Synthetic Diamonds

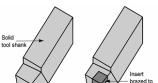
- *Sintered polycrystalline diamond* (SPD) fabricated by sintering very fine-grained diamond crystals under high temperatures and pressures into desired shape with little or no binder
- Usually applied as coating (0.5 mm thick) on WC-Co insert
- Applications: high speed machining of nonferrous metals and abrasive nonmetals such as fiberglass, graphite, and wood
 - Not for machining of steel or titanium alloys.


Cubic Boron Nitride

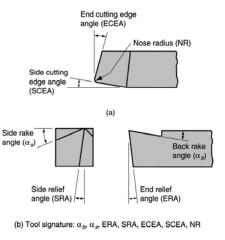
- Next to diamond, cubic boron nitride (cBN) is hardest material known
- Fabrication into tool inserts same as SPD: coatings on WC-Co inserts
 - Applications: machining steel and nickel-based alloys

Tool Geometry

Mech. Eng. Dept. - Concordia University



Tool hold


Mechanical

Dr. M. Medraj

- Used for turning, boring, shaping, and planing

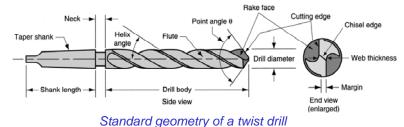
Single-Point Tool Geometry

Seat (to support insert)

Tool Geometry: Single Point						
	90°	80°	80°	60°	55°	35°
(a)	(b)	(c)	(d)	(e)	(f)	(g)
	Strength, power requirements, vibration tendency					
	Versatility and accessibility					

(e) triangle (equilateral), (f) rhombus with two 55° point angles, (g) rhombus with two 35° point angles. Also shown are typical features of the geometry.

Dr. M. Medraj

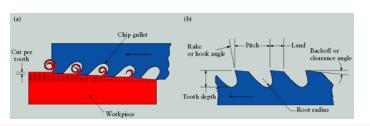

Mech. Eng. Dept. - Concordia University

Mech 421/6511 lecture 21/17

Tool Geometry: Twist Drills

- By far the most common cutting tools for hole-making
- Usually made of high speed steel

- Chip removal ٠
 - Flutes must provide sufficient clearance to allow chips to be extracted from bottom of hole
- Friction makes matters worse
 - Rubbing between outside diameter of drill bit and newly formed hole
 - Delivery of cutting fluid to drill point to reduce friction and heat is difficult because chips are flowing in the opposite direction


Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

Mech 421/6511 lecture 21/18

Tool Geometry: Broach

Each tooth is successively higher than the previous tooth. In broaching, one stroke or cycle of the machine produces a finished part.

- ٠ Tooling cost can be high
- In some cases not suited for low production rates ٠
- Parts to be broached must be enough to withstand the forces of ٠ the process
- Surface to be broached must be accessible ٠

Tool Geometry: Broach

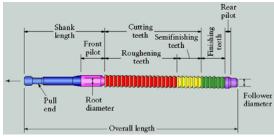
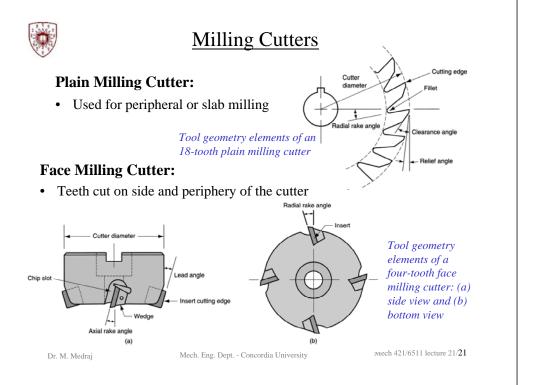



FIGURE 8.62 (Kalpakjian) Terminology for a pull-type internal broach used for enlarging long holes.

Mech. Eng. Dept. - Concordia University

Cutting Fluids

- Any liquid or gas applied directly to machining operation to improve cutting performance
- Two main problems addressed by cutting fluids:
 - 1. Heat generation at shear zone and friction zone
 - 2. Friction at the tool-chip and tool-work interfaces
- Other functions and benefits:
 - Wash away chips (e.g., grinding and milling)
 - Reduce temperature of workpart for easier handling
 - Improve dimensional stability of workpart
- Cutting fluids can be classified according to function:
 - Coolants designed to reduce effects of heat in machining
 - Lubricants designed to reduce tool-chip and tool-work friction

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

Mech 421/6511 lecture 21/22

Coolants

- Water used as base in coolant-type cutting fluids
- Most effective at high cutting speeds where heat generation and high temperatures are problems
- Most effective on tool materials that are most susceptible to temperature failures (e.g., HSS)

Lubricants

- Usually oil-based fluids
- Most effective at lower cutting speeds
- Also reduces temperature in the operation

Dry Machining

- No cutting fluid is used
- Avoids problems of cutting fluid contamination, disposal, and filtration
- Problems with dry machining:
 - Overheating of the tool
 - Operating at lower cutting speeds and production rates to prolong tool life
 - Absence of chip removal benefits of cutting fluids in grinding and milling

Next Time:

Different Examples