Outline

- Flat Rolling
- Other Deformation Processes Related to Rolling
- Shape rolling, thread rolling, ring rolling
- Rolling Mills Configurations
- Rolling Analysis - Friction is insignificant
- Design Exercise
- Force Approximation - Friction is significant

Rolling

Deformation process in which work piece (slab or plate) thickness is reduced by compressive forces exerted by two opposing rolls

Types of Rolling

- By \qquad of work:
- Flat rolling - used to reduce thickness of a rectangular cross-section
- Shape rolling - a square cross-section is formed into a shape such as an I-beam
- By \qquad of work:
- Hot Rolling - most common due to the large amount of deformation required
- Cold rolling - produces finished sheet and plate stock

Some of the steel products made in a rolling mill

Shape Rolling

Work is deformed into a contoured cross-section rather than flat (rectangular)

- Accomplished by passing work through rolls that have the reverse of desired shape
- Products include:
- Construction shapes such as I-beams, L-beams, and U-channels
- Rails for railroad tracks
- Round and square bars and rods

Rolling Mills Configurations

Two-high:
two opposing large diameter rolls

Three-high: work passes through both directions

Rolling Mills Configurations

Four-high:
backing rolls support smaller work rolls

Cluster mill: multiple backing rolls on smaller rolls

Tandem rolling mill: sequence of two-high mills

Ring Rolling

- Bulk deformation process used to form threads on cylindrical parts by rolling them between two dies
- Most important commercial process for mass producing bolts and screws
- Performed by cold working in thread rolling
machines
- Advantages over thread cutting (machining):

- machines \quad Advantages over thread cutting (machining):
- Higher production rates
- Better material utilization
- Stronger threads due to work hardening
- Better fatigue resistance due to compressive stresses introduced by rolling
(1) start of cycle

(2) end of cycle

Flat Rolling - Terminology

Flat Rolling - Terminology

- Friction at the entrance controls the maximum possible draft.

$$
d_{\max }=\mu^{2} R \quad \begin{aligned}
& \mathrm{d}_{\max }=\text { Maximum draft (mm) } \\
& \\
& \\
& \\
& \\
& R=\text { Coefficient of friction }
\end{aligned}
$$

- However, it depends on lubrication, work-piece and roller materials and temperature.

$$
\mu=\left[\begin{array}{c}
0.1 \\
0.2 \\
0.3
\end{array}\right] \text { for coldworking } \text { for warmworking }
$$

- When sticking occurs, μ can be as high as 0.7

Rolling Analysis

Rolling Analysis

- Infinite sheet
- Uniform, perfectly rigid rollers
- Constant material volume:
$\mathrm{L}_{\mathrm{o}}=$ initial plate length
$L_{f}=$ final plate length
$\Rightarrow \mathrm{t}_{\mathrm{o}} \mathrm{W}_{\mathrm{o}} \mathrm{v}_{\mathrm{o}}=\mathrm{t}_{\mathrm{f}} \mathrm{W}_{\mathrm{f}} \mathrm{v}_{\mathrm{f}} \quad$ (flow rate)

Rolling Analysis

- Define true strain $\varepsilon=\ln \frac{t_{o}}{t_{f}} \quad$ (Note: use $\mathbf{t}_{0} / \mathbf{t}_{\mathrm{f}}$ to keep $>\mathbf{0}$)
- Apply average flow stress $\quad \bar{Y}_{f}=\frac{K \varepsilon^{n}}{1+n}$
- Approximate roll force:

$$
F=w \int_{0}^{L} p d L=\bar{Y}_{f} w L
$$

where $\quad L=\sqrt{R\left(t_{o}-t_{f}\right)}$

- Torque estimated by T/roller $=0.5 \mathrm{~F} \mathrm{~L}$

- Power $=\mathrm{P}=\mathrm{T} \omega=2 \pi \mathrm{NFL}$ (for two rollers)

Example

Roll a 12 inch wide strip which is 1 inch thick, to 0.875 inch thickness in one pass with roll speed of 50 rpm and radius $=10$ inches. Material has $\mathrm{K}=$ $40,000 \mathrm{psi}, \mathrm{n}=0.15$ and $\mu=0.12$.
Is this is a feasible process? If so calculate F, T, and power. (Assume friction is not significant!)

Force Approximation: Large Rolls

Large Reduction and Significant Friction
$\frac{h_{\text {ave }}}{L} \ll 1 \quad$ Friction is significant
$p_{\text {ave }}=\bar{Y}_{f}^{\prime}\left(1+\frac{\mu L}{2 h_{\text {ave }}}\right)$
$F /$ roller $=L w \bar{Y}_{f}\left(1+\frac{\mu L}{2 h_{\text {ave }}}\right)$
$\bar{Y}^{\prime}=1.15 \bar{Y}=1.15 \times \frac{K \varepsilon^{n}}{n+1}$

- The last equation can be used in both cases, i.e. when friction is significant or not.
- It is an approximation using the distortion-energy criterion for plane strain (von Mises). [see 6.2.2 Kalpakjian]

Interface Pressure: h / L ratio

Next time
Extrusion

