

Outline

- Introduction
- **Cutting Operations**
 - Shearing
 - Blanking
 - Piercing (punching)
- Sheet Metal Cutting Analysis
- **Bending Operations**
- Types of bending
- Bending analysis

Historically

Sheet metal stamping was developed as a mass production technology for the production of bicycles around the **1890's**. This technology played an important role in making the system of interchangeable parts economical (perhaps for the first time).


```
Dr M Medrai
```

Mech. Eng. Dept. - Concordia University

Mech 421/6511 lecture 8/1

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

Mech 421/6511 lecture 8/2

Sheet Metalworking

- Cutting and forming operations performed on relatively thin sheets of metal which are produced by rolling
- Thickness of sheet metal = 0.4 mm (1/64 in) to 6 mm (1/4 in)
- Thickness of plate stock > 6 mm
- Operations usually performed as cold working (except when the stock is • thick or the metal is brittle then warm working is performed)

Sheet and Plate Metal Products

- Sheet and plate metal parts for consumer and industrial products such as:
 - Automobiles and trucks
 - Airplanes
 - Railway cars and locomotives
 - Farm and construction equipment
 - Small and large appliances _
 - Office furniture
 - Computers and office equipment

Mech 421/6511 lecture 8/3

Sheet Metal Processes

Cutting 1.

- Shearing to separate large sheets; or cut part perimeters or make _ holes in sheets
- 2. Bending
 - Straining sheet around a straight axis
- 3. Drawing
 - Forming of sheet into convex or concave shapes

Advantages of Sheet Metal Parts

- High strength
- Good dimensional accuracy
- Good surface finish
- Relatively
- For large quantities, economical mass production operations are available

Cutting Operations

Clearance in Sheet Metal Cutting

- Distance between the punch and die
- Typical values range between 4% and 8% of stock thickness
 - If too small, fracture lines pass each other, causing double burnishing and larger force
 - If too large, metal is pinched between cutting edges and excessive burr results
- For a round *blank* of diameter D_b : Blanking punch diameter $= D_b - 2c$ Blanking die diameter $= D_b$ For a round *hole* of diameter D_h : Hole punch diameter $= D_h$ Hole die diameter $= D_h + 2c$

where c = clearance

Die size determines blank size D_b ; punch size determines hole size

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

Mech 421/6511 lecture 8/10

Clearance in Sheet Metal Cutting

• Recommended clearance can be calculated by:

c = atwhere c = clearance; a = allowance; and t = stock thickness

• Allowance *a* is determined according to type of metal

Metal group

1100S and 5052S aluminum alloys, all tempers 0.045

2024ST and 6061ST aluminum alloys; brass, soft cold rolled steel, 0.060 soft stainless steel

Cold rolled steel, half hard; stainless steel, half hard and full hard 0.075

• Low "c" for soft materials

• High "c" for hard materials

<u>Angular Clearance</u> Straight portion (for resharpening)

• Typical values: 0.25° to 1.5° on each side

Dr. M. Medraj

a

Dr. M. Medraj

Cutting Forces

F=S*t*L

Where: S= Shear strength t=thickness L=length of cutting edge

If shear strength is not known cutting force can be estimated as:

F=0.7*TS*t*L

Where TS =Ultimate tensile strength

Dr. M. Medraj

Mech. Eng. Dept. - Concordia University

Mech 421/6511 lecture 8/13

D_h

Dh

C ←

⇒C

Important to determine the press capacity (tonnage)

Bending

Straining sheetmetal around a straight axis to take a permanent bend

• Metal on inside of neutral plane is compressed, while metal on outside of neutral plane is stretched

Types of Sheetmetal Bending

V-Bending

- For low production
- Performed on a *press brake*
- V-dies are simple and inexpensive

piercing

- Shearing forces can be reduced by cutting tools
- This is analogous to the action of hand scissors, in which the blades close at an angle rather than parallel to each other.

blanking

Cutting Forces

• Angled cutting tools reduce the instantaneous sheared thus reduce the required.

Dr. M. Medraj

Shearing

Mech. Eng. Dept. - Concordia University

Mech 421/6511 lecture 8/14

- For high production
- For angles
- Pressure pad required
- Dies are more complicated and costly

Dr. M. Medraj

