Outline

- Ternary Phase Diagram:
- Review
- Alkemade's Lines
- Crystallization Path Analysis
- Vertical Sections
- Isothermal Sections

Ternary Systems: Review

A ternary temperature-composition "phase diagram" at constant total pressure may be plotted as a threedimensional "space model" within a right triangular prism with the equilateral composition triangle (......... triangle) as base and temperature as vertical axis.

- The three binary subsystems such as A-B, B-C, and C-A, can be seen on the vertical faces of the prism. The three binary eutectic points are e_{1}, e_{2}, and e_{3}. - Within the prism, the three liquidus surfaces descending from the melting points of pure A, B, and C and make the ternary eutectic point E .

A ternary system A-B-C

Dr. M. Medraj
Mech. Eng. Dept. - Concordia University
Mech 6661 lecture 11/2

The lines on the liquid surface are the constant temperature lines called isotherms.

The plan view of the ternary space model with the important points

Space model for a simple eutectic ternary system A-B-C

Alkemade Lines

- Alkemade lines are the lines that connect the primary compositions of two phase fields which share a common boundary.
- Alkemade lines divide a phase diagram into compatibility triangles.
- This diagram is divided into two compatibility triangles: $\mathrm{A}-\mathrm{C}-\mathrm{AB}$ and $\mathrm{B}-\mathrm{C}-\mathrm{AB}$.
- Alkemade's theorem can be used to determine the direction of decreasing temperature on a phase diagram, as we will discuss later.

Each boundary line on the diagram has an Alkemades line associated with it.

- The intersection of a boundary line (or extended boundary line) with its corresponding Alkemade line (or extended Alkemade line) is a maximum in temperature on the boundary line and a minimum in temperature on the Alkemade line. This point is labeled " m ".
- This theorem can be used to draw arrows on the diagram showing the direction of decreasing temperature.
- The " m " on the triangle edges are the binary invariant points - points in this example
- The point that resulted from the intersection of AB-C Alkemede line and the boundary between C and AB is called point.

Ternary system with a binary compound

- E_{1} and E_{2} are ternary eutectic points.
Dr. M. Medraj
Mech. Eng. Dept. - Concordia University
Mech 6661 lecture 11/5

Alkemade Lines: Ternary Congruent Compound

- As usual, we begin by highlighting each boundary line and the Alkemade line associated with it.
- Identify the compatibility triangles.
- Label the max/min points.
- Draw the temperature arrows on the boundary and Alkemade lines.
- The binary invariant points are given their appropriate labels.
- And the ternary invariant points are labeled.

- The diagram is finished.

Ternary system with a congruent ternary compound

Alkemade Lines: Ternary Incongruent Compound

- As usual, we begin by highlighting each boundary line and the
Alkemade line associated with it.
- Identify the compatibility triangles.
- Label the max/min points.
- Draw the temperature arrows on the boundary and Alkemade lines.

The ABC/A,B,C boundary lines and the associated Alkemade lines . \qquad ... cross. To correct for this, draw a temporary extension of the ABC-C Alkemade line and of $A B C / A$ and B boundaries .

- The binary invariant points are given their appropriate labels.
- And the ternary invariant points are labeled.
- The diagram is finished.

Ternary system with a incongruent ternary compound
Dr. M. Medraj
Mech. Eng. Dept. - Concordia University
Mech 6661 lecture 11/8

- First, identify the compounds on the diagram and their corresponding primary crystallization fields.
- Then connect compounds, whose primary crystallization fields share a boundary, with Alkemade lines.
- The Alkemade lines form compatibility triangles.
- Remember that where Alkemade lines cross boundary lines the boundary lines are at a local maximum and the Alkemade lines are at a local minimum in temperature

Crystallization Path Analysis

Ternary Isothermal Sections

- Now draw a tie line from the primary phase B through the point to the boundary with ac.
- The crystallization path begins at the point and moves away from the the primary phase as B begins to crystallize out of the composition.
- Now AC begins to crystallize out as the path follows the boundary line to its ternary invariant point.
- Finally, at the ternary invariant point all of the remaining liquid crystallizes.

- Now we are ready to trace the cooling path of any ternary composition.
- First locate the composition of interest (c_{o}) on the diagram.
- Next determine its primary crystallization field.
- Identify the compatibility triangle: in our example, it is AC B - C
- And final liquid composition: The final liquid composition is the ternary invariant point where all three compounds in the compatibility triangle meet.

Dr. M. Medraj
\checkmark Isothermal sections in ternary phase diagrams are horizontal slices through the three dimensional diagram. All points on the section are at the same temperature, unlike the normal view of the ternary diagram where the liquidus surface is seen.
\checkmark A Ternary diagram is a flat representation of the curved liquidus surface. Therefore, in a normal ternary diagram, everything shown is liquid.
\checkmark In an isothermal section both
liquid and solid can be present.

- Identify and trace all of the isotherms for the temperature for isothermal section of $1100^{\circ} \mathrm{C}$.

- Then fill in for the region of the diagram where the liquidus area is still below the temperature of $1100^{\circ} \mathrm{C}$.

Two phase regions occur when the intersection between the isotherm and a single phase region (e.g. liquid) is a line (not a point).

- Draw both lines that intersect with the phase boundary line and surround the two-phase region.
- Finally, draw in dashed tie lines from the composition to the liquidus region of $1100^{\circ} \mathrm{C}$.
- Trace all isotherms on this diagram at $700^{\circ} \mathrm{C}$, and draw the tie lines.

Every phase field left at this point will consist of three phases. There will either be two solids and a liquid of a specific composition, or there will be three solid phases.

The three phase region shown here consists of $\mathrm{Rb}_{2} \mathrm{BeF}_{4}-\mathrm{Rb}_{3} \mathrm{BeF}_{5}-\mathrm{L}_{1}$.

Dr. M. Medraj
Mech. Eng. Dept. - Concordia University
Mech 6661 lecture 11/14

Ternary Isothermal Sections

- There are 4 types of phase fields in the isothermal section of a ternary system:
- The single phase region. The phase can be a liquid or a solid solution. Liquid is more common. In the previous examples, this region is composed entirely of a liquid of varying composition.
- The two Phase region, containing both solid and liquid. The composition of the liquid is found using the tie lines that were drawn in on the second slide. The solid is of a single, unvarying composition. This region shares a border with the liquid region.
- The three Phase region, composed of two solid compositions and one unvarying liquid composition. This region is easily recognized by its sole point of contact with the liquid region, labeled L_{1} in the previous slide.
- The solid region, contains three distinct solids. This region is triangular, and has no contact with the liquid region.
None that the previous examples do not contain all four types of phase fields. Therefore the next example will be at $400^{\circ} \mathrm{C}$.

Three-Phase Regions

LiF-RbF-BeF ${ }_{2}$ Isothermal Section at $400^{\circ} \mathrm{C}$

Remember that the
regions with one corner in contact with the liquidus have liquid in them with the comp. of the contact point.

- Trace all isotherms on this diagram at $400^{\circ} \mathrm{C}$, identify the liquid and draw the tie lines in the two phase regions.

The remaining portion has either three solids, or a liquid and two solids.
-Trace all Alkemade lines that do not come into contact with the liquidus lines, or cross any of the tie lines.

- Identify all the regions that contain
- Everything that is left is all
(three-........... region).

10 minutes Break

$\rightarrow \mathrm{A}) \mathrm{L}_{1} \& \mathrm{Li}_{2} \mathrm{BeF}_{4} \& \mathrm{Li}_{2} \mathrm{RbBe}_{2} \mathrm{~F}_{7}$
\rightarrow B) $\mathrm{L}_{2} \& \mathrm{Li}_{2} \mathrm{RbBeF}_{7} \& \mathrm{LiRbBeF}_{4}$
\rightarrow C) $\mathrm{L}_{3} \& \mathrm{LiRbBeF}_{4} \& \mathrm{Rb}_{2} \mathrm{BeF}_{4}$
\rightarrow D) $\mathrm{L}_{4} \& \mathrm{RbBrF}_{3} \& \mathrm{Rb}_{2} \mathrm{BeF}_{4}$
$>$ Three solids regions :

+ I) $\mathrm{LiF} \& \mathrm{Li}_{2} \mathrm{RbBe}_{2} \mathrm{~F}_{7} \& \mathrm{Li}_{2} \mathrm{BeF}_{4}$
\oplus II) $\mathrm{LiF} \& \mathrm{RbBe}_{2} \mathrm{~F}_{7} \& \mathrm{LiRbBeF}_{4}$
+ III) $\mathrm{LiF} \& \mathrm{Rb}_{2} \mathrm{BeF}_{4} \& \mathrm{LiRbBeF}_{4}$
\oplus IV) LiF \& $\mathrm{Rb}_{2} \mathrm{BeF}_{4} \& \mathrm{Rb}_{3} \mathrm{BeF}_{3}$
$\oplus \mathrm{V}) \mathrm{LiF} \& \mathrm{LiRbF}_{2} \& \mathrm{Rb}_{3} \mathrm{BeF}_{5}$
\oplus VI) $\mathrm{RbF} \& \mathrm{LiRbF}_{2} \& \mathrm{Rb}_{3} \mathrm{BeF}_{5}$

Ternary Vertical Sections: Introduction

Constructing Vertical Sections

- Vertical sections are two dimensional representations of the crystallization paths for a series of points that lie along a chosen line on a ternary phase diagram.
- There are three main lines in a vertical section which divide the various solids and liquid phases. These three lines are called the liquidus, subliquidus, and solidus lines, and will be explained in more detail later

Vertical sections in ternary systems can be very complicated due to the crossing of Alkemedes' lines and changing crystallization paths.

Space model for a simple eutectic ternary system A-B-C

- Identify primary phase fields
- Draw Alchemades lines
- Identify direction of falling temperature on boundary lines.
TiO_{2}
$\mathrm{Al}_{2} \mathrm{TiO}_{5}$

Step 1 - Solidus lines

- Choose the section line ($\mathrm{x}-\mathrm{y}$).
- Draw diagram framework.

Constructing Vertical Sections

Step 2 - Liquidus line

- The top view of the liquidus line can be seen on the ternary diagram.

Now we must Find and indicate all of the important compositions.
Dr. M. Medraj
Mech. Eng. Dept. - Concordia University

Vertical Section: Important Compositions

- The essential compositions used to develop the sub-liquidus line in a vertical section are called important compositions. The purpose of these important compositions is to reduce the work load on the investigator.
- These compositions separate regions of similar crystallization paths. Therefore, the crystallization paths of these compositions directly intersect important features of the ternary diagram. Some examples of these features are given.

Examples:

\checkmark Ternary Invariant Points
$\checkmark \quad \mathrm{m}$-Points
\checkmark Alchemades Lines
\checkmark Diagram Boarders

Constructing Vertical Sections

Step 3 - Sub-liquidus line

- Find and indicate all of the important compositions.
- Perform isoplethal analysis - record temperature where boundary line is intersected.
- Draw sub-liquidus line.
- Check each segment with an intermediate isoplethal analysis.

Mech. Eng. Dept. - Concordia University

Constructing Vertical Sections

Step 5 - Labels

- Refer to the ternary diagram and label vertical section

x

