The Mg–Al–Ca system is experimentally investigated at 400 °C using diffusion couples and key experiments. Phase relations and solubility limits were determined for binary and ternary phases using EPMA and XRD techniques. The Mg$_2$Ca, (Al,Mg)$_2$Ca phases were found to form substitutional solid solutions where Al substitutes Mg atoms. The Al$_2$(Mg,Ca) and Al$_{14}$Mg$_8$Ca$_9$ phases form solid solutions where Ca substitutes Mg atoms. The Al$_3$Ca phase has a complex solid solution where Mg substitutes both Al and Ca atoms. No ternary solubility was found for the Al$_4$Ca phase. Based on the results of the phase analysis and experimental literature data, the isothermal section of the Mg–Al–Ca phase diagram at 400 °C has been constructed.

© 2010 Elsevier Ltd. All rights reserved.
binary phases from Al–Ca system reported by [7] \((\text{Al}_3\text{Ca}_8\text{ and } \text{Al}_{14}\text{Ca}_{13})\) were not considered. Later, Ozturk [10] reinvestigated the Mg–Al–Ca ternary phase diagram as a part of the multicomponent Mg–Al–Ca–Sr system with a new model for the binary Al–Ca system that included the Al\(_3\)Ca\(_8\) and the Al\(_{14}\)Ca\(_{13}\) intermetallic compounds. Tkachenko et al. [11] also published their experimental work on this system. They studied the Mg–Al–Ca system in the Mg-rich corner and reported an isothermal section at 150 °C.

Luo et al. [12] suggested the presence of a ternary solid solution \((\text{Mg,Al})_2\text{Ca}\) which is responsible for the improved creep resistance of Mg–Al–Ca alloys up to 200 °C due to its metallurgical stability and interfacial coherency with magnesium matrix. Its crystal structure was determined by Ameriou et al. [13] by single crystal x-ray diffractometry. They studied single crystals of this phase extracted from slow cooled samples and reported the existence of C36-Laves phase between \(\text{Mg}_2\text{Ca}\) and \(\text{Al}_2\text{Ca}\) with the composition range of \(\text{Mg}_{0.66}\text{Al}_{1-x}\text{Ca} (0.66 < x < 1.07)\). Further, Suzuki et al. [3] reported in 2004 the existence of \((\text{Al,Mg})_2\text{Ca}\) ternary intermetallic compound with the C36 crystal structure in an as-cast AXJ530 alloy (Mg–5Al–3Ca–0.15Sr, wt.%). In a later study of the Mg-rich alloys (in 2005), Suzuki et al. [14] reported that this C36 phase has a chemical composition of \(\text{Mg}_{52}\text{Al}_{30}\text{Ca}_{18}\) and exists only at high temperature as a stable phase, but transforms to Mg and Al\(_2\)Ca at 300 °C. However, Suzuki et al. in 2006 [4] reported the composition of C36 phase as \(\text{Mg}_{22}\text{Al}_{45}\text{Ca}_{33}\), which is different from [14]. Also, [4] reported that C36 compound forms during the eutectic reaction \(L \rightarrow \text{Mg} + \text{C36} + \text{Mg}_2\text{Ca}\) supporting their previous finding [14], but the temperature range of the C36 phase was changed. As illustrated

Fig. 1. Mg–Al–Ca isothermal sections from the literature: (a) at 400 °C [7], (b) at 415 °C [5], (c) at 400 °C [4], (d) at 500 °C [4], (e) at 400 °C [2] and (f) at 500 °C [2].
in Fig. 1(c) and (d), [14] has reported that the C36 phase with a wide homogeneity range is stable at 500 °C, but does not exist at 400 °C. It should be mentioned that the samples studied by Suzuki et al. [4] at 400 and 500 °C have different compositions. Only Mg-rich samples were studied at 400 °C, whereas samples studied at 500 °C have a wide range of compositions. According to the EPMA data reported by [4], the C36 phase was found only in samples with a high content of Ca and Al at 500 °C. The Mg-rich samples do not contain C36 phase neither at 400 °C nor at 500 °C. Additionally, [4] reported extensive solid solubilities of the Mg2Ca, C36, Al12Mg17 and Al2Ca phases as shown in Fig. 1(c) and (d).

Zhong et al. [5] reported a new Al2(Mg, Ca) solution found in a Mg2Ca-Al diffusion couple at 415 °C. They analyzed this phase using SEM, EPMA, orientation imaging microscopy (OIM) and scanning transmission electron microscopy (STEM) combined with first-principle calculations and found that it is the C36 Laves phase with the lattice parameters \(a = 5.450\text{Å} \) and \(c = 17.514 \text{Å} \). The isothermal section at 415 °C along with the diffusion path of the Mg2Ca-Al diffusion couple are presented in Fig. 1(b).

Wang [15] investigated twenty-one as-cast alloys in this system using DSC, XRD and metallography. The thermal arrests were presented as well as the phase analysis of the as-cast and slow-cooled samples. Aljarrah et al. [16] re-assessed Wang’s work and suggested the existence of solid solubilities for the Al2Ca, Mg2Ca and Al2Ca binary compounds, but no exact information on the phase boundaries was given.

Janz et al. [2] published a thermodynamic model of the Mg–Al–Ca system based on literature data and four key experiments. Similarly to [4] this thermodynamic model suggests that the C36 phase is stable at 500 °C, but does not exist at 400 °C. But according to [2] the composition of the C36 phase is different than that reported by [4], and as shown in Fig. 1(e) and (f), the homogeneity range of C36 at 500 °C extends in a different and quite unusual direction. Wide solid solubilities were also reported for the Al2Ca, Al3Ca, Mg2Ca and Al13Ca6 binary compounds.

Several thermodynamic models were proposed in literature. Aljarrah et al. [16] and Islam et al. [17] reported thermodynamic models for the Mg–Al–Ca ternary system without modeling the ternary solid solutions and ternary phases. The more advanced models that included ternary solid solubilities of binary phases were reported by Gröbner et al. [7] and Ozturk [10]. The ternary (AlMg2)2Ca C36-Laves phase was included in the models of Zhong et al. [5] and Janz et al. [2]. But its composition and homogeneity region do not correspond to the experimental data reported by Suzuki et al. [4] and Amerioun et al. [13]. There is no thermodynamic model that includes the Al2(Mg, Ca) phase C36-Laves phase.

3. Experimental

The alloys for diffusion couples and key experiments were prepared at MTL-CANMET from pure metals (Mg-99.8 wt.%, Al-99.9 wt.%, Ca-99 wt.%). CO2-1%SF6 gas was used as a protective atmosphere.

The solid–solid diffusion couples were prepared from two blocks of alloys and/or pure metals. The blocks’ facing surfaces were pre-grinded up to 1200 grit using SiC paper and polished up to 1 μm using diamond paste and 99% ethanol as a lubricant. The blocks were pressed together using clamping rings, placed in a Ta container and sealed in a quartz tube under protective Ar atmosphere. The prepared samples were annealed at 400 °C for 2 weeks. When, the solid–solid diffusion couples failed, solid–liquid diffusion couples were prepared instead. The block of alloy or metal with the lower melting temperature was melted on top of the block with the higher melting temperature in an arc-melting furnace under protective Ar atmosphere. The prepared samples were annealed at 400 °C for 2 weeks in a sealed quartz tube.

The annealed samples were grinded and polished up to 1 μm with 99% ethanol as a lubricant. The prepared samples were studied at CANMET by EPMA analysis using point and line scans. The two key samples were also studied by X-ray diffraction. The XRD patterns were obtained using PANanalytical Xpert Pro powder x-ray diffractometer with a CuKα radiation. The XRD spectrum was taken from 20 to 120 degree 2θ with a step size 0.02 degree 2θ and a scanning time 14s/step. X-ray diffraction study of the samples was done using XPert HighScore Plus Rietveld analysis software. The error of the EPMA measurements was estimated to be ± 2 at.%. This value was obtained from the comparison and statistical analysis of the compositions of selected phases from several samples.

4. Results

As discussed above, although the Mg–Al–Ca system was studied by several authors, there are still many unsolved questions. This system contains four Laves phases: Mg2Ca (C14, MgZn12-structure type), Al2Ca (C15, Cu2Mg-structure type), (AlMg2)2Ca (C36, MgNi2-structure type) and Al2(Mg, Ca) (C36, MgNi2-structure type). All these Laves phases have wide ranges of homogeneity, but literature data on their compositions and phase boundaries are contradictory. Additionally, the phase equilibria among these phases should be verified. In this work, we present experimental investigation of the compositions and phase boundaries of the Laves phases in the Mg–Al–Ca system in order to construct the isothermal section at 400 °C.

4.1. Diffusion couples study

4.1.1. The Mg–Ca diffusion couple

In the recent publication of Suzuki et al. [4], they reported extensive solubilities of the Al2Ca and Mg2Ca phases as illustrated in Fig. 1(c) and (d). They claimed that the Mg2Ca phase has a solid solubility range around 5 at.% even in the binary Mg–Ca system. Since these data contradict previous studies of the Mg–Ca system, we have prepared a solid–solid Mg2Ca diffusion couple at 400 °C to determine the solubility limits of the Mg2Ca phase. Despite of the successful formation of a Mg2Ca diffusion layer, it cracked and chipped out during the metallographic preparation because of the brittleness of the Mg2Ca diffusion layer. Therefore, solid–liquid Mg–Ca diffusion couple was prepared, resulting in a massive Mg2Ca diffusion layer. The microstructure of the solid–liquid Mg–Ca and the EPMA line scans are presented in Fig. 2. Binary solid–liquid diffusion couples, in contrast to solid–solid ones, always contain two-phase region between the diffusion layers and the liquid end-member. In this diffusion couple, Mg was the liquid end-member and thus the (Mg + Mg2Ca) eutectic region was formed between the Mg and Mg2Ca layers.

The results of the EPMA line scan of the solid–liquid Mg–Ca diffusion couple at 400 °C are shown in Fig. 2(b). Scan-2 in Fig. 2(a) is 600 μm long and contains 30 points. Three zones were identified in the diffusion couple: Mg, (Mg + Mg2Ca) eutectic and Mg2Ca.

To determine the solubility range of the Mg2Ca phase, a least-squares approximation was applied for the points that correspond to the Mg2Ca layer. As illustrated in Fig. 3, this least-squares approximation has shown minimal composition variation of the Mg2Ca phase. The standard deviation for Mg and Ca contents was found to be 1.3 at.% and therefore the variation of the least squares approximation is within the error limits of EPMA measurement that was estimated as ~2 at.%. The solid solubility range of the Mg2Ca binary phase calculated from the equation obtained by the
least squares approximation is 0.51 at.% Mg and consequently Mg2Ca binary phase should be considered as stoichiometric.

4.1.2. The Al—Mg—Ca solid—solid diffusion couples

For precise analysis of the solid solutions in the Al—Mg—Ca system three solid—solid diffusion couples were prepared. Only the (Mg29Ca71)–Al diffusion couple was successful. The (Mg67Ca33)–(Al67Ca33) and the (Al67Mg33)–(Al2Ca) diffusion couples failed because of the high brittleness of the Mg67Ca33 and Al67Mg33 alloys that caused numerous cracks in the samples and prevented formation of diffusion layers.

A micrograph of the (Mg29Ca71)–Al diffusion couple at 400 °C is shown in Fig. 4(a). This diffusion couple was made to determine the phase relations in the Al-rich corner and the center of the Al—Mg—Ca system. The composition profile of the (Mg29Ca71)–Al diffusion couple annealed at 400 °C is illustrated in Fig. 4(b).

The diffusion path starts in a two phase Mg29Ca71 binary alloy; next is the area were the Ca-rich ternary eutectic region with the composition 18.0 ± 1.6 at.% Mg, 2.7 ± 0.2 at.% Al, 79.3 ± 1.5 at.% Ca is in equilibrium with the Al2Ca phase. The diffusion path crosses the Mg2Ca phase and then goes to the Mg2Ca + Mg two phase region. Since the diffusion path crosses the Mg2Ca solid solution perpendicular to the Mg2Ca–Al2Ca line, it indicates the substitution of Ca by Mg or Al. As could be seen from Figs. 4(b) and 5, the Mg2Ca layer demonstrates no variation of the Ca composition and thus there is no substitution of Ca by Mg or Al in the Mg2Ca solid solution. Next, the diffusion path crosses the Al2Ca + Mg two phase region and goes to the Al2Ca solid solution. Al2Ca phase demonstrates substitutional solid solubility, where Ca is substituted by Mg. The Al2Ca(Ca,Mg) also has substitutional solubility as Ca is substituted by Mg atoms at constant 67 at. % Al. From the Al2Ca(Mg,Ca) phase the diffusion path goes to the Al4Ca phase, which has no ternary solid solubility. The last layer in this diffusion couple is the Al solid solution dissolving up to 2.8 at.% Mg.

Therefore, two lines scans (Fig. 6) were performed to determine the homogeneity regions of the Mg2Ca, (Al,Mg)2Ca and Al2Ca phases. The first line scan, denoted as Scan-1 in Fig. 6, is 27 μm long and contains 20 points. Its composition profile is shown in Fig. 7(a). The second line scan, denoted as Scan-2 in Fig. 6, is 50 μm long and contains 25 points. Its composition profile is shown in Fig. 7(b).

Analysis of the EPMA data obtained from the KS1 alloy allowed us to determine the homogeneity range of the Mg2Ca, (Al,Mg)2Ca and Al2Ca phases along the Mg2Ca–Al2Ca joint (Fig. 8). The experimentally determined phase boundaries for these phases are given in Table 1. The estimated error of measurement is ~ 2 at.% Mg.

In order to verify our EPMA findings, KS1 was studied by XRD using X’Pert HighScore Plus Rietveld analysis software. XRD pattern illustrated in Fig. 9 demonstrates sharp peaks for the Mg2Ca (○) and Al2Ca (□) phases. The peaks of the (Al,Mg)2Ca phase (Δ) are extremely broad suggesting the existence of a wide homogeneity range. This supports our EPMA data as discussed above.

Broad peaks of the (Al,Mg)2Ca phase did not allow us to obtain a good agreement indices (Reff = 13.9, R = 28.0, Rw = 37.97818, GOF = 7.36101), but using the Rietveld analysis with small values for the profile parameters we were able to determine lattice parameters of the phases at the phase boundaries (Fig. 9). The determined lattice parameters are presented in Table 2. They correspond to the compositions of the phase boundaries in Table 1.

4.1.3. Key experiments

Since the (Mg67Ca33)–(Al67Ca33) and the (Al67Mg33)–(Al67Ca33) diffusion couples failed, two ternary key samples were prepared to determine the phase boundaries of the ternary (Al,Mg)2Ca and (Al, Mg)2Ca Laves phases. The prepared samples were annealed at 400 °C for 15 days and studied by EPMA and XRD.

The first key sample (KS1) was prepared to determine the homogeneity range of the (Al,Mg)2Ca–C36 phase. The annealed KS1 alloy has a peritectic microstructure as presented in Fig. 6. The (Al, Mg)2Ca phase is formed between Mg2Ca and Al2Ca phases in such a way that it could be treated as a micro-diffusion couple.
The second key sample (KS2) was prepared to determine the homogeneity range of the Al2(Ca,Mg)-C36 phase. The microstructure of the annealed KS2 alloy is presented in Fig. 10(a). It contains four different phases and therefore did not reach the global equilibrium, but the layers formed between the Al2Ca and Al phases could be treated as a micro-diffusion couple with a local equilibrium between the layers. Two EPMA line scans were made to determine homogeneity regions of the Al2Ca and Al2(Ca,Mg) phases. The first line scan, denoted as Scan-1 on Fig. 10(a) is 90 μm long and contains 45 points. It crosses all four phases available in the sample: Al2Ca, Al2(Ca,Mg), Al140Mg89 and (Al). Its composition profile is shown in Fig. 10(b). The second line scan was made to determine more precisely the phase boundaries of the Al2(Ca,Mg). It is 40 μm long and contains 20 points. Its composition profile is shown in Fig. 10(c).

Experimental data from both line scans were analyzed and presented in Fig. 11. In this figure, the points that belong to a single phase region were superimposed on the Gibbs triangle and the homogeneity regions of the ternary compounds were determined.
The solubility ranges of the Al$_2$Ca, Al$_2$(Ca,Mg), Al$_{14}$O$_{Mg89}$ and (Al) phases are presented in Table 3. The estimated error of measurement is w^2 at.% Al.

The XRD pattern is illustrated in Fig. 12. It demonstrates the Rietveld analysis for the Al$_2$Ca, Al$_2$(Ca,Mg), Al$_{14}$O$_{Mg89}$ and (Al) phases in the KS2 sample. Silicon peaks appear in this spectrum because it is used as an internal standard. The determined lattice parameters of the phases are presented in Table 4. They correspond to the compositions of the phase boundaries in Table 3.

4.1.4. Mg$_{e}$Al$_2$Ca liquid–solid diffusion couple

In order to determine phase relations between the Mg and Al$_2$Ca phases, a liquid-solid diffusion couple was prepared and annealed at 400 °C for two weeks. No continuous diffusion layers were formed in this diffusion couple. As shown in Fig. 13, three diffusion zones were formed between Al$_2$Ca and Mg alloys. The zones a and c represent the mixture of (Mg–Al$_2$Ca) eutectic with Al$_2$Ca and Mg dendrites respectively. The zones b represents the region of fine globular (Mg–Al$_2$Ca) eutectic. Only Mg and Al$_2$Ca phases were found in this diffusion couple. That means that the Mg and the Al$_2$Ca phases form a stable two-phase region at 400 °C. The Mg–Al$_2$Ca tie-line was obtained by the EPMA analysis of the Mg and phases near the phase boundaries. The composition of Mg was found to be 97.5 ± 1.1 at.% Mg, 2.0 ± 0.6 at.% Al and 0.4 ± 0.5 at.% Ca. The Al$_2$Ca composition was found to be 3.2 ± 0.5 at.% Mg, 64.1 ± 0.5 at.% Al and 32.7 ± 0.3 at.% Ca.

5. Discussion

The main issue in the Mg–Al–Ca system is the precise determination of the solid solution boundaries. Therefore, the experimental data on solid solubility and phase relations for the Mg$_2$Ca, (Al,Mg)$_2$Ca, Al$_2$(Ca,Mg), Al$_{14}$O$_{Mg89}$ and (Al) phases were collected and analyzed. The Mg$_2$Ca, (Al,Mg)$_2$Ca, Al$_2$(Ca,Mg) phases have unidirectional solid solutions with wide homogeneity ranges. The Al$_{14}$O$_{Mg89}$ compound also has unidirectional solid solution, but the homogeneity range is limited to 3 at.% Ca. No ternary solubility was detected for the Al$_4$Ca compound. The Al$_2$Ca phase has a complex area of homogeneity that is illustrated in Fig. 14.

The shape of the Al$_2$Ca solution at 400 °C, defined by EPMA data, indicates that Mg substitute both Al and Ca. The determined homogeneity range is in good agreement with EPMA data reported by [4]. The analysis of the lattice parameters showed that

<table>
<thead>
<tr>
<th>Phase</th>
<th>Phase boundaries, at.% Al/Ca/Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg$_2$Ca</td>
<td>0/33.33/66.67*</td>
</tr>
<tr>
<td>(Al,Mg)$_2$Ca</td>
<td>40.61/33.33/26.06</td>
</tr>
<tr>
<td>Al$_2$Ca</td>
<td>57.66/33.33/9.01</td>
</tr>
<tr>
<td>(Al,Mg)$_2$Ca</td>
<td>40.61/33.33/26.06</td>
</tr>
<tr>
<td>Al${14}$O${Mg89}$</td>
<td>57.66/33.33/9.01</td>
</tr>
</tbody>
</table>

* Value is calculated from the stoichiometry of the phase.
substitution of Al by Mg increases the lattice parameter \(a\) from 8.022 to 8.090 Å (see Tables 1 and 2). In contrast, the substitution of Al by Mg decreases the lattice parameter \(a\) from 8.022 to 8.011 Å (see Tables 1 and 2).

Such behavior is understandable considering the atomic sizes of elements. According to [19] the empirical metallic radii of Al, Mg and Ca are 1.25, 1.50 and 1.80 Å, respectively. Thus, the difference between Al and Mg atoms is 0.25 Å and the difference between Mg and Ca atoms is 0.3 Å. The small difference in atomic sizes allows Mg to substitute both Al and Ca atoms. Since the difference between Al and Mg atoms is smaller, the substitution between Al and Mg is higher (9.01 at.%) than the substitution between Mg and Ca (5.92 at.%).

The experimental data for all other phases were also carefully analyzed and compared with the literature data as shown in Fig. 15. The Mg2Ca solid solution was studied using binary and ternary samples. It extends in the ternary system as a substitutional solid solution where Mg atoms are substituted by Al up to 24.91 at.% Al. No substitution between Mg and Ca atoms was found. This finding agrees well with the data of [2,5,7,13] who also reported a unidirectional solubility and similar ternary extension of the solid solution. The area shaped solubility of the Mg2Ca solid solution reported by [4] (Fig. 1(c) and (d)) is based on one experimental point obtained from the Mg-rich sample that gives the composition Al18.9Ca29.5Mg51.6 to Mg2Ca phase (Fig. 15). Since the EPMA analysis was done for Mg-rich samples only, it is possible that the spot could catch Mg-matrix and therefore the composition of the Mg2Ca phase is shifted towards Mg.

The literature data on the (Al,Mg)2Ca-C36 phase are the most controversial. As described in our literature review and presented in Fig. 1, the authors of [2,4,5,13,14] completely disagree with each other on the composition and the solubility range of this compound. Unfortunately, most authors studied slow-cooled and as-cast alloys. Only [4,14] studied samples annealed at 400 and 500 °C. But, as could be seen in Fig. 1(c) and (d), only Mg-rich samples were studied at 400 °C. Careful analysis of the EPMA data reported by [4] showed that the (Al,Mg)2Ca-C36

<table>
<thead>
<tr>
<th>Phase</th>
<th>Space group (No.)</th>
<th>Lattice parameters at phase boundaries, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg2Ca</td>
<td>P 63/m m c (194)</td>
<td>(a = 6.270(5)), (c = 10.169(7))</td>
</tr>
<tr>
<td>(AlMg)2Ca</td>
<td>P 63/m m c (194)</td>
<td>(a = 5.925(1), c = 19.155(9))</td>
</tr>
<tr>
<td>Al2Ca</td>
<td>F d-3 m (227)</td>
<td>(a = 8.0900(4))</td>
</tr>
</tbody>
</table>

\(a\) Data obtained from the [18].

Fig. 10. (a) Micrograph of the KS2 sample annealed at 400 °C for 15 days, (b) Concentration profile of the 1st line scan and (c) Concentration profile of the 2nd line scan.

Fig. 11. Homogeneity regions of the Al2Ca, Al2(Ca,Mg), Al140Mg89 and (Al) phases.
phase was found at 500 °C in the samples that contain more than 10 at.% Ca and 9.7 at.% Al. The \((\text{Al},\text{Mg})_2\text{Ca}\)-C36 phase was not found in the Mg-rich samples at both temperatures. Since, Suzuki et al. \[14,4\] did not study any samples close to the \((\text{Al},\text{Mg})_2\text{Ca}\) composition at 400 °C, Mg-rich samples can not be used as a solid evidence that C36 phase is not stable at 400 °C.

Besides, \[2\] reported a thermodynamic model where \((\text{Al},\text{Mg})_2\text{Ca}\)-C36 phase is not stable at 400 °C (Fig. 1(e) and (f)), despite their own finding that the C36 phase is present in the slow cooled Al47.53Ca33.2Mg19.3 alloy. The composition of the C36 phase found in this alloy is Al44.9Ca32.5Mg22.5 that is in a good agreement with our data (Fig. 15). The freezing temperature of the slow-cooled Al47.53Ca33.2Mg19.3 alloy \[2\] should be lower than 400 °C, because the ternary extension of the Mg2Ca and Al2Ca solid solutions in this sample are smaller than in KS1 sample annealed at 400 °C (Fig. 15).

Therefore, we can use the data of \[2\] as an indirect evidence of the fact that \((\text{Al},\text{Mg})_2\text{Ca}\) phase is stable at 400 °C. Also \[13\] found the \((\text{Al},\text{Mg})_2\text{Ca}\)-C36 phase in slow-cooled samples. They found sufficient amount of this phase to extract single crystals from the samples that were cooled at 20 °C/h. Such a slow cooling rate should cause full decomposition of the C36 phase if assumed that it decomposes between 400 and 500 °C. In this work, the \((\text{Al},\text{Mg})_2\text{Ca}\) phase was found in the as-cast and in the alloys annealed for 2 weeks at 400 °C. Based on this discussion and presented experimental data, we suggest that \((\text{Al},\text{Mg})_2\text{Ca}\)-C36 phase is stable at 400 °C.

The composition \((\text{Al},\text{Mg})_2\text{Ca}\) phase found in this work (Table 1) agrees well with the compositions reported by \[4\] for 500 °C and, \[13\] and \[2\] for slow-cooled alloys. But in contrast to \[4\], \[13\] and \[2\] who made a single point analysis, we have analyzed samples

![Fig. 12. Rietveld analysis for key sample KS2 annealed at 400 °C for 15 days.](image1)

![Fig. 13. Mg–Al2Ca liquid–solid diffusion couple at 400 °C. (I) Optical micrograph. (II) BSE micrograph. (a) Al2Ca dendrites + (Mg–Al2Ca) eutectic; (b) (Mg–Al2Ca) eutectic; (c) Mg dendrites + (Mg–Al2Ca) eutectic.](image2)

![Fig. 14. Solubility limits of the Al2Ca solid solution at 400 °C.](image3)

![Fig. 15. EPMA results in relation to experimental data from the literature.](image4)
using the EPMA line scans that allowed us to determine complete homogeneity range of this compound.

The Al2(Ca,Mg) is the second C36 phase in this system. It was reported first by Zhong et al. [5], who has determined Mg-rich boundary of this solid solution at 415 °C. No other authors reported this phase. In this work, the complete solubility range of the Al2(Ca, Mg)-C36 at 400 °C was determined using EPMA line scan technique (Table 3). Its crystal structure was confirmed using X-ray powder diffraction. Our experimental results are in excellent agreement with the data of [5] and [2] reported the phase with the composition Al65.2Ca24.5Mg10.3 in the slow-cooled Al36.8Ca4.5Mg58.6 alloy (Fig. 15). They associated this composition with the Al4Ca phase despite the fact that 25 at.% Ca can not correspond to substitutional solid solution of Al4Ca, which must have 20 at.% Ca. This resulted in extending the Al4Ca solid solution up to 10 at.% Mg as could be seen in Figs. 4(b) and 5, the Al4Ca phase has no ternary solid solubility. The Al140Mg89 phase is a line-shaped solid solution with the homogeneity ranges up to 3 at.% Ca due to the substitution of Mg by Ca.

Based on the current experimental data, the isothermal section of the Al-Mg-Ca phase diagram at 400 °C has been constructed and presented in Fig. 16. The phases, solid solubility limits and phase equilibria were determined using the EPMA and XRD data.

6. Conclusion

The isothermal section of the Al–Mg–Ca phase diagram at 400 °C is constructed as a result of experimental study of the Mg–Al–Ca system. The (Al,Mg)2Ca and Al2(Mg,Ca) ternary Laves phases were found in this system. Their homogeneity ranges and crystal structures were obtained by EPMA and XRD analysis of the diffusion couples and ternary key samples. Also, the ternary solid solubilities for the Mg2Ca, Al2Ca, Al4Ca, Al140Mg89 phases were determined. This study enhanced the understanding of the ternary Al–Mg–Ca phase diagram. It demonstrated that the phase relations and the solubility ranges of the phases are more complex than what was reported in the literature in terms of thermodynamic models and experimental studies.

Acknowledgments

Financial support from General Motors of Canada Ltd. and the Natural Sciences and Engineering Research Council of Canada (NSERC) through the CRD grant program is gratefully acknowledged.

References