
Chapter 11

GRAIN GROWTH
FOLLOWING
RECRYSTALLIZATION

11.1 INTRODUCTION

Compared with primary recrystallization, the growth of grains in a recrystallized single-
phase material might appear to be a relatively simple process. However, despite a large
amount of theoretical and experimental effort, many important questions remain
unanswered. The theoretical basis for understanding grain growth was laid down over
50 years ago in the classic papers of Smith (1948, 1952) and Burke and Turnbull (1952),
and the apparent conflict of theory with experiment prompted several other theoretical
models over a period of some 30 years. The application of computer simulation
techniques (Anderson et al. 1984) provided a fresh approach to the problem and the
interest and controversy surrounding the computer simulations gave a stimulus to the
subject, which resulted in a number of international conferences (§1.2.2) and a large
volume of literature.

Although primary recrystallization often precedes grain growth, it is of course not a
necessary precursor, and the contents of this chapter are equally relevant to grain
growth in materials produced by other routes, such as casting or vapour deposition. In
this chapter we consider only the growth of grains under the driving pressures due to
boundaries in the material. However, we note here that boundaries can be induced to
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migrate by externally applied forces such as those due to stress as discussed in §5.2.1 or
by magnetic fields (e.g. Smolukowski and Turner 1949, Watanabe 2001).

In this chapter we are primarily concerned with the kinetics of grain growth and the
nature and stability of the microstructure; the factors affecting the mobilities of the grain

boundaries are discussed in chapter 5.

11.1.1 The nature and significance of grain growth

When primary recrystallization, which is driven by the stored energy of cold work, is
complete, the structure is not yet stable, and further growth of the recrystallized grains
may occur. The driving force for this is a reduction in the energy which is stored in the
material in the form of grain boundaries. The driving pressure for grain growth is often
some two orders of magnitude less than that for primary recrystallization (§1.3.2), and is
typically �10�2 MPa. Consequently, at a particular temperature, grain boundary
velocities will be slower than during primary recrystallization, and boundary migration
will be much more affected by the pinning effects of solutes and second-phase particles.

The technological importance of grain growth stems from the dependence of properties,
and in particular the mechanical behaviour, on grain size. In materials for structural
application at lower temperatures, a small grain size is normally required to optimise the
strength and toughness. However, in order to improve the high temperature creep
resistance of a material, a large grain size is required. Examples of the application of the
control of grain growth which are considered in chapter 15, include the processing
of silicon–iron transformer sheet and the development of microstructures
for superplastic materials. There is also considerable interest in grain growth in thin
metal, oxide and semiconductor films for electronic applications as discussed in §11.5.4.
A good understanding of grain growth is therefore a pre-requisite for control
of the microstructures and properties of metals and ceramics during solid state
processing.

Grain growth may be divided into two types, normal grain growth and abnormal grain

growth or secondary recrystallization. Normal grain growth, in which the microstructure
coarsens uniformly, is classified as a continuous process. There is a relatively narrow
range of grain sizes and shapes, and the form of the grain size distribution is usually
independent of time and hence of scale as shown in figure 11.1a. After an initial
transient period of growth, the microstructure reaches a quasi-stationary state in which
the grain size distribution has an invariant form when expressed in terms of the grain
size scaled by its mean value, and only the scale varies with some power of time. Such
self-similarity is found for several growth processes such as particle coarsening or bubble
growth (Mullins 1986), making this a challenging problem for modellers, who are often
attracted more by the mathematical intricacies than the intrinsic importance of grain
growth.

During abnormal grain growth, which is a discontinuous process, a few grains in the
microstructure grow and consume the matrix of smaller grains and a bimodal grain size
distribution develops. However, eventually these large grains impinge and normal grain
growth may then resume (fig. 11.1b).
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11.1.2 Factors affecting grain growth

The main factors which influence grain growth, and which will be considered later in
this chapter include:

� Temperature

Grain growth involves the migration of high angle grain boundaries and the kinetics will
therefore be strongly influenced by the temperature dependence of boundary mobility as
discussed in §5.3.1. Because the driving force for grain growth is usually very small,
significant grain growth is often found only at very high temperatures.

� Solutes and particles

Although grain growth is inhibited by a number of factors, the pinning of grain
boundaries by solutes (§5.3.3) and by second-phase particles (§4.6) is particularly
important.

� Specimen size

The rate of grain growth diminishes when the grain size becomes greater than the
thickness of a sheet specimen. In this situation the columnar grains are curved only in
one direction rather than two, and thus the driving force is diminished. The grain
boundaries, where they intersect the surface, may also develop grooves by thermal
etching, and these will impede further grain growth.

� Texture

A strongly textured material inevitably contains many low angle boundaries of low
energy, and there is therefore a reduced driving force for grain growth.

11.1.3 The Burke and Turnbull analysis of grain growth kinetics

Burke (1949) and Burke and Turnbull (1952) deduced the kinetics of grain growth
on the assumption that the driving pressure (P) on a boundary arises only from the

Fig. 11.1. Schematic representation of the change in grain size distribution during (a)
Normal grain growth and (b) Abnormal grain growth, (After Detert 1978).
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curvature of the boundary. If the principal radii of curvature of a boundary of energy �b
are R1 and R2 then

P ¼ �b
1

R1
þ

1

R2

� �
ð11:1Þ

If the boundary is part of a sphere of radius R, then R¼R1¼R2 and

P ¼
2 �b
R

ð11:2Þ

Burke and Turnbull then made the following assumptions:

� cb is the same for all boundaries.

� The radius of curvature (R) is proportional to the mean radius ( �RR) of an individual

grain, and thus

P ¼
��b
R

ð11:3Þ

where � is a small geometric constant.

� The boundary velocity is proportional to the driving pressure P (equation 5.1), and to
dRR=dt. i.e. dRR=dt ¼ cP; where c is a constant.

Hence,

dR

dt
¼

�c1�b

R
ð11:4Þ

and therefore

R
2
�R

2

0 ¼ 2�c1�bt

which may be written as

R
2
�R

2

0 ¼ c2t ð11:5Þ

where �RR is the mean grain size at time t, R0 is the initial mean grain size and c2 is a
constant.

This parabolic growth law is expected to be valid for both 2-D and 3-D microstructures,
although, according to equation 11.1 the constant c2 will be different for the two
situations. In the limit where R

2
� R

2

0

R
2
¼ c2t ð11:6Þ

Equations 11.5 and 11.6 may be written in the more general form

R
n
�R

n

0¼ c2t ð11:7Þ

R ¼ c2t
1=n ð11:8Þ

The constant n, often termed the grain growth exponent is, in this analysis equal to 2.
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11.1.4 Comparison with experimentally measured kinetics

The use of equations 11.5 and 11.6 to describe grain growth kinetics was first suggested
empirically by Beck et al. (1949). These authors found that n was generally well above 2
and that it varied with composition and temperature. It is significant that very few
measurements of grain growth kinetics have produced the grain growth exponent of 2
predicted by equations 11.5 or 11.6, and values of 1/n for a variety of metals and alloys
as a function of homologous temperature are shown in figure 11.2. The trend towards
lower values of n at higher temperatures, seen in this figure, has been reported in many
experiments.

Data for some zone-refined metals in which the impurity levels are no more than a few
ppm are shown in table 11.1. The values of n range from 2 to 4, with an average of
2.4� 0.4. Grain growth kinetics have been extensively measured in ceramics, and
compilations of the data (Anderson et al. 1984, Ralph et al. 1992) reveal a similar range
of grain growth exponents as is shown in table 11.2.

Much effort has been expended in trying to explain why the measured grain growth
exponents differ from the ‘theoretical’ value of 2 given by the Burke and Turnbull
analysis, and the earlier explanations fall into two categories:

(i) The boundary mobility (M) varies with the boundary velocity
The boundary mobility, as discussed in §5.1.3, may under certain circumstances be a
function of boundary velocity, in which case the linear dependence of velocity on
driving pressure (equation 5.1), which is assumed in the Burke and Turnbull analysis
will not apply. An example of this is the case of solute drag on boundaries (§5.4.2).
Figure 5.32 shows that the velocity is not linearly proportional to the driving pressure
except for very low or very high boundary velocities. However, the shape of these curves

Fig. 11.2. The temperature dependence of the grain growth exponent n for isothermal
grain growth in a variety of materials, (Higgins 1974).
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would only predict a higher grain growth exponent if conditions were such that the
boundary changed from breakaway to solute drag behaviour during grain growth, and
it is unlikely that these conditions would commonly be met.

As discussed in §5.3.1.2, there is evidence of changes in grain boundary structure and
mobility at very high temperatures, even in metals of very high purity. It is conceivable
that this could account in some cases for transitions to lower n values, although there is
no direct evidence for this.

Grain growth in ceramics has been extensively investigated, and in many cases the
measured values of n have been ascribed to particular mechanisms of boundary
migration. For example Brook (1976) lists eleven proposed mechanisms for boundary
migration with growth exponents of between 1 and 4.

(ii) There is a limiting grain size
An alternative empirical analysis of the data was given by Grey and Higgins (1973), who
proposed that equation 5.1 be replaced by

v ¼MðP� CÞ ð11:9Þ

where C is a constant for the material.

Table 11.1

Grain growth exponents for isothermal grain growth in high purity metals (from Anderson

et al. 1984).

Metal Exponent n Reference

Al 4 Gordon and El Bassyoumi
(1965)

Fe 2.5 (varies with T) Hu (1974)

Pb 2.5 Bolling and Winegard
(1958)

Pb 2.4 Drolet and Gallibois (1968)

Sn 2.3 Drolet and Gallibois (1968)

Table 11.2

Grain growth exponents for isothermal grain growth in ceramics (from Anderson

et al. 1984).

Ceramic Exponent n Reference

ZnO 3 Dutta and Spriggs (1970)

MgO 2 Kapadia and Leipold
(1974)

MgO 3 Gordon et al. (1970)

CdO 3 Petrovic and Ristic (1980)

Ca0.16Zr0.84O1.84 2.5 Tien and Subbaro (1963)
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If this relationship is used in the Burke and Turnbull analysis then equation 11.4
becomes

dR

dt
¼ c1

� �b

R
� C

� �
ð11:10Þ

When, as a result of grain growth, the driving pressure P falls to the value C, there is no
net pressure, and grain growth ceases at a limiting value. Grey and Higgins showed that
this form of equation accounted quite well for the kinetics of grain growth in several
materials. The term C is similar to the Zener pinning term which accounts for a limiting
grain size in two-phase materials (§11.4.2), and Grey and Higgins suggested that the
physical origin of C might be solute clusters which are unable to diffuse with the
boundary.

However, there is often little evidence for n¼ 2 even in very pure materials, and it has
been suggested that one or more of the underlying assumptions of the Burke and
Turnbull analysis may be incorrect. Although we will later conclude that there is little
evidence to suggest that the Burke and Turnbull result is in serious error, a great deal of
work has gone into producing more refined models of grain growth which address not
only the kinetics but also the grain size distribution.

11.1.5 Topological aspects of grain growth

The Burke and Turnbull analysis assumes that the mean behaviour of the whole array of
grains can be inferred from the migration rate of part of one boundary and does not
consider the interaction between grains or the constraints imposed by the space-filling
requirements of the microstructure. This aspect of grain growth was first addressed by
Smith (1952) who discussed grain growth in terms of grain topology and stated that
‘Normal grain growth results from the interaction between the topological requirements of

space-filling and the geometrical needs of surface tension equilibrium’.

From the introduction to grain topology in §4.5, we note that in a two-dimensional
grain structure, the only stable arrangement which can fulfil both the space-filling and
boundary tension equilibrium requirements is an array of regular hexagons as shown in
figure 11.3, and any other arrangement must inevitably lead to grain growth. For
example, if just one 5-sided polygon is introduced (fig. 11.4a), then it must be balanced
by a 7-sided one to maintain the average number of edges per grain at 6 (§4.5.1) as
shown in figure 11.4a. In order to maintain the 120� angles at the vertices, the sides of
the grains must become curved. Grain boundary migration then tends to occur in order
to reduce the boundary area, and the boundaries migrate towards their centres of
curvature (fig. 11.4b). Any grain with more than six sides will tend to grow because its
boundaries are concave and any grain with less than six sides will tend to shrink as it has
convex sides. The shrinkage of the 5-sided grain in figure 11.4a leads to the formation of
a 4-rayed vertex (fig. 11.4b) which decomposes into two 3-rayed vertices and the grain
becomes 4-sided (fig. 11.4c). A similar interaction allows the grain to become 3-sided
(fig. 11.4e) and to eventually disappear leaving a 5-sided grain adjoining a 7-sided grain
(fig. 11.4f).
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Von Neumann (1952) and Mullins (1956) proposed on the basis of surface tension
requirements, that the growth of a 2-D cell of area A with N sides is given by

dA

dt
¼ cðN� 6Þ ð11:11Þ

or, if written in terms of grain radius (R)

dR

dt
¼

cðN� 6Þ

2R
ð11:12Þ

Fig. 11.4. Schematic diagram of growth of a 2-dimensional grain structure. (a) A grain
of less than or more than 6 sides introduces instability into the structure, (b)–(f)

Shrinking and disappearance of the 5-sided grain, (Hillert 1965).

Fig. 11.3. A 2-dimensional array of equiaxed hexagonal grains is stable.
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Rivier (1983) later showed that the Von Neumann–Mullins law is actually a geometric
result and not due to surface tension.

In three dimensions, no regular polyhedron with plane sides can fill space and have its
sides at the appropriate angles to balance the boundary tensions. As discussed in §4.5,
the nearest shape is the Kelvin tetrakaidecahedron (fig. 4.17) but the angles are not exact
and the boundaries must become curved to obtain equilibrium at the vertices. Therefore
grain growth is inevitable in an ideal 3-dimensional grain structure.

11.2 THE DEVELOPMENT OF THEORIES AND MODELS OF

GRAIN GROWTH

A complete theory of grain growth must take into account both the topological space-
filling requirements discussed by Smith and the kinetics of local boundary migration as
discussed by Burke and Turnbull. In this section we review the various attempts that
have been made to improve on the theory discussed in §11.1.3. We should note that all
the theories discussed below assume that the rate limiting factor in grain growth is the
migration of the boundaries. However, grain growth also involves the migration of
grain vertices, and the possibility that the mobility of these defects might become rate
limiting under certain circumstances as discussed in §5.5, should not be ignored,
although it appears likely that this is only significant for nano-structured materials.

11.2.1 Introduction

Because the geometry of an array of grains is very similar to that of a soap froth, and the
stability and evolution of the latter is of interest in its own right, this analogy has been
widely studied. For example Smith (1952) suggested, on the basis of data from soap
froth experiments that the distribution of grain sizes and shapes should be invariant,
and that the grain area should be proportional to time. In both systems the driving force
for growth is the reduction in boundary energy. The analogy between the two cases is
very close, and similar growth kinetics and grain size distributions are found, as
discussed by Weaire and Rivier 1984, Atkinson 1988 and Weaire and Glazier 1992.
However, the mechanisms of growth are different because in froths, growth occurs by
gas molecules permeating through the cell membranes in order to equalise the pressures.
There are other significant differences, and there are therefore limits to the extent that
soap froth evolution can be used as an analogy for grain growth.

Theories and models of grain growth may be divided into two general categories,
deterministic and statistical. Deterministic models are based on the premise that the
behaviour of any grain in the assembly is dependent upon the behaviour of all the other
grains. If the geometry of the whole grain assembly is known, then topological
constraints are automatically accounted for, and by the application of relatively simple
local rules such as equation 11.4, the evolution of the grain structure is predicted. This
very powerful approach requires extensive computing power if reasonable sized grain
assemblies are to be studied, and deterministic models will be further discussed in
§11.2.4.
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Statistical models are based on the assumption that the behaviour of the whole grain
assembly can be calculated by generalising the behaviour of a small part of the
microstructure. The Burke and Turnbull analysis is an example of such a model, and
the later refinements which predict grain size distributions and which approximate the
topographical constraints are discussed in §11.2.2 and §11.2.3.

The development of statistical theories of grain growth has a long and complex history
and the merits of different approaches are still hotly debated. The essential problem is
that the theories need to reduce the topological complexity of the real grain structure
and its effect on the driving forces for grain growth to some average value, with a
manageable number of parameters, for the particular grain under consideration. In
assessing the theories we will concentrate on their predictions of the kinetics of grain
growth and of the grain size distributions, and the comparison of these experimentally.

11.2.2 Early statistical theories

The majority of statistical grain growth theories fall into the category of mean field

theories which determine the behaviour of a single grain or boundary in an environment
which is some average representation of the whole assembly. The theories may be
divided into two groups. During grain growth, the larger grains grow and the smaller
grains shrink and statistically the grains can be considered to move in grain size–time–
space under the action of a force which causes a drift in the mean grain size. Such
models, typified by the theories of Feltham and Hillert are commonly known as drift

models. Another approach, taken by Louat, is to consider the grain faces to undergo a
random walk in the grain size–time–space. Grain growth then formally becomes a
diffusion-like process, and this is often known as the diffusion model.

11.2.2.1 Feltham and Hillert’s theories

Hillert (1965) developed a statistical theory of grain growth which was based on the
assumption that the grain boundary velocity is inversely proportional to its radius of
curvature. He used previous analyses of the Ostwald ripening of a distribution of
second-phase particles to obtain the relationship

dR

dt
¼ cM�b

1

Rcrit
�

1

R

� �
ð11:13Þ

where c¼ 0.5 for a 2-D array and 1 for a 3-D array. Rcrit is a critical grain size which
varies with time according to

dðR2
critÞ

dt
¼

cM�b

2
ð11:14aÞ

dRcrit

dt
¼

cM�b

4Rcrit
ð11:14bÞ

A grain such that R<Rcrit will shrink, and one with R>Rcrit will grow. Hillert showed
that topographic considerations resulted in the mean grain radius �RR being equal to Rcrit,
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and therefore equation 11.14 predicts parabolic grain growth kinetics of the form of
equations 11.4 and 11.5.

Hillert also solved equation 11.13 to obtain the grain size distribution f(R,t). As shown
in figure 11.6a, this is much narrower than the log-normal distribution which is close to
that found experimentally (§11.2.4 and fig. 11.6b). In Hillert’s grain size distribution the
maximum was 1.8 �RR for a 3-D array and 1.7 �RR for a 2-D array. He argued that if the
initial grain size distribution contained no grains larger than 1.8 �RR then normal grain
growth would result and the distribution would adjust to the predicted f(R,t). However,
if grains larger than 1.8 �RR were present then he predicted that abnormal grain growth
would result, although this latter conclusion has been shown to be incorrect (§11.5.1).

Hillert’s result is very similar to that obtained by Feltham (1957), who started from the
assertion that the normalised grain size distribution was log-normal and time invariant.
He obtained

dR2

dt
¼ c ln

R

�RR

� �
ð11:15Þ

where c is a constant. Setting R¼Rmax¼ 2.5 �RR he obtained parabolic growth kinetics.

11.2.2.2 Louat’s random walk theory

Louat (1974) argued that boundary motion can be analysed as a diffusional process in
which sections of the boundary undergo random motion. This will lead to grain growth
because the process of grain loss by shrinkage is not reversible. The theory predicts
parabolic grain growth kinetics and an invariant Rayleigh grain size distribution (fig.
11.6a) which is close to that found experimentally (§11.2.4). Although the theory has
been criticised by a number of authors on the grounds that it lacks a strong physical
basis for its assumptions, it was later defended and further developed by its author
(Louat et al. 1992). Pande (1987) has developed a statistical model which combines the
random walk element of Louat’s theory with the radius of curvature approach of
Hillert.

11.2.3 The incorporation of topology

11.2.3.1 Defect models

Hillert (1965) proposed an alternative approach to two-dimensional grain growth based
on the topological considerations discussed in §11.1.5.Within an array of six-sided grains,
the introduction a 5-sided and 7-sided grain as shown in figure 11.4a, constitutes a
stable defect. As growth occurs and the 5-sided grain ultimately disappears (fig. 11.4b–e),
the 5–7 pair defect moves through the structure (fig. 11.4f). Hillert argued that the rate of
growth depended on the time taken for the defect to move (i.e. for a 5-sided grain to
shrink) and on the number of such defects in the microstructure. If the latter remained
constant, which is a reasonable assumption for a time invariant grain distribution, then a
parabolic growth rate similar to that for his statistical theory (equation 11.14) results.
Morral andAshby (1974) extended this model to 3-D by introducing 13 or 15-sided grains
into an array of 14-sided polyhedra.
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11.2.3.2 The Rhines and Craig analysis

Rhines and Craig (1974) emphasised the role of topology in grain growth. They argued
that when a grain shrinks and disappears as shown in figure 11.4, then not only must
this volume be shared out between the neighbouring grains, but because the topological
attributes (shape, faces, edges, vertices etc.) of the neighbours also alter, this will in turn
influence grains which are further away. They introduced two new concepts, the sweep

constant and the structural gradient.

They defined a sweep constant�, as the number of grains lost when the grain boundaries
in the specimen sweep out unit volume of material. They argued that � will remain
constant during grain growth. An alternative parameter �*, the number of grains lost
when the boundaries sweep through a volume of material equal to that of the mean
grain volume, was suggested by Doherty (1975). Clearly both these parameters cannot
remain constant during grain growth, neither can be measured directly by experiment,
and the matter is unresolved. The second parameter introduced by Rhines and Craig
was the dimensionless structural gradient &, which is the product of the surface area per

unit volume (Sv) and the surface curvature per grain (mv/Nv). i.e.

& ¼
mv Sv

Nv
ð11:16Þ

where Nv is the number of grains per unit volume and

mV ¼

Z
SV

1

2

1

r1
þ

1

r2

� �
dSV ð11:17Þ

where r1 and r2 are the principal radii of curvature.

Rhines and Craig argued that & should remain constant during growth and as shown in
figure 11.5a, found & to be constant in their experiments. However, Doherty (1975)
suggested an alternative structure gradient &� ¼ mv=Nv, which is the mean curvature per
grain.

The Rhines and Craig analysis, using Doherty’s modifications as suggested by Atkinson
(1988) is as follows. The mean pressure (P) on the boundaries is

P ¼
�b mv

Sv
ð11:18Þ

and the mean boundary velocity

v ¼MP ¼
M�bmV

SV
ð11:19Þ

The volume swept per second per unit volume of specimen is v.Sv, and if �* grains are
lost per unit volume, for each �VV (where Nv ¼ �VV�1), the rate of loss of grains will be

dNv

dt
¼

�� v Sv

V
¼ ��M �b mv Nv ð11:20Þ
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For each grain lost, per unit volume, there is a net increase in volume of �VV which on
average is distributed over the remaining Nv grains. Therefore

d �VV

dt
¼

dNV

dt

�VV

NV
¼

��M�bmV

NV
ð11:21Þ

If �*, M, �b, and mv/Nv (¼ &�) are constant with time then equation 11.21 can be
integrated to give

�VV ¼
��M�bmVt

NV
þ �VV0 ¼ ctþ �VV0 ð11:22Þ

where �VV0 is the mean grain volume at t¼ 0.

As shown in figure 11.5b, Rhines and Craig (1974) found such a relationship in
aluminium of 99.99% purity. A linear dependence of �VV on time implies that the grain
radius is growing as t1/3, i.e. the grain growth exponent n of equation 11.7 is equal to 3. As
emphasised by Rhines and Craig (1974), this is an important difference from the value
of 2 predicted by most other theories. The linear dependence of �VV on time is only
predicted in the above analysis if &� remains constant, whereas the results shown in
figure 11.5b shown a constancy of &. Doherty (1975) has suggested that this could be
reconciled if in equation 11.18, the driving pressure P was replaced by (P�c), in accord
with equation 11.9.

The Rhines and Craig experiments were carried out by the very time-consuming method
of serial sectioning of specimens rather than by analysis of 2-D sections as is commonly
done. They found that conventional 2-D analysis of their specimens resulted in the grain
radius being proportional to t0.43, i.e. n¼ 2.3, which is rather close to that commonly

Fig. 11.5. (a) Plot of mv Sv against Nv for grain growth in aluminium, (b) Plot of mean
grain volume (1/Nv) against annealing time for aluminium, (after Rhines and

Craig 1974).
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found (table 11.1). They concluded from the discrepancy between their 2-D and 3-D
measurements that Nv can only be determined from 3-D methods such as serial sectioning

and cannot be inferred from measurements on a 2-D section. There has been widespread
discussion of this point, and the analysis of 3-D microstructures produced by computer
simulation (Anderson et al. 1984, Srolovitz et al. 1984a) has been of help. These have
shown that there will only be a serious discrepancy between 2-D and 3-D metallographic
methods if the structure is anisotropic, and the difference in the grain growth exponents
measured by Rhines and Craig (1974) in 2-D and 3-D therefore implies that their
microstructure was anisotropic. There is of course a serious implication in this for all
experiments based on 2-D sections, and the work of Rhines and Craig emphasises that
grain shape anisotropy must be determined if 2-D measurements are to be used for
comparison with theory.

This seminal work left a number of unanswered questions about theoretical and
experimental aspects of grain growth kinetics. In particular, it was not clear whether a
grain growth exponent of 3 would be the result of any model based on topographic
considerations or whether it is specific to this particular analysis. As discussed by
Atkinson (1988), it is not obvious that the microstructure will be in topographic
equilibrium, particularly at low temperatures, and if this is the case then the local
topographic constraints discussed in §11.2.3.1 may be more appropriate. Kurtz and
Carpay (1980) proposed a detailed statistical theory of grain growth, which placed an
emphasis on topographic considerations, and was essentially an extension of the Rhines
and Craig model. However, unlike Rhines and Craig, Kurtz and Carpay predicted a
parabolic (n¼ 2) grain growth relationship.

Because of the difficulty of serial sectioning methods, experimental confirmation of
�VV / t is limited to the work of Rhines and Craig (1974), and as shown by the results in
tables 11.1 and 11.2, it would be inadvisable to place too much reliance on a study of a
single material, in particular aluminium of only moderate purity, in which boundary
mobility is known to be very sensitive to small amounts of impurity (§5.3.3). However
a grain growth exponent of �3 would not be inconsistent with many investigations
of metals.

11.2.3.3 The Abbruzzese–Heckelmann–Lücke model

These authors developed a 2-D statistical theory of grain growth (Lücke et al. 1990,
1992, Abbruzzese et al. 1992). A key element of their approach is the introduction of
topological parameters relating the number of sides of a grain ( �nini) to its size (ri). From
experimental measurements they found that

�nni ¼ 3þ 3ri ð11:23Þ

and that the mean size ( �rnrn) of grains with n sides was given by

n ¼ 6þ
3ð�rrn � 1Þ

�2
ð11:24Þ

where � is a correlation coefficient equal to 0.85.
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Although this special linear relationship is derived from experiments, the authors
suggested that it would be generally applicable to equiaxed real grain structures. The
parabolic grain growth kinetics predicted on this model are similar to those of the
Hillert theory i.e. equation 11.14.

11.2.3.4 Other recent statistical theories

The discussions above show that although statistical theories of normal grain growth in
pure single-phase polycrystals have been developed over a period of some 50 years, there
is no general agreement as to the correct solution, or even if this type of approach can
ever yield a satisfactory solution. New theories and modifications of the old theories are
still being produced at an alarming rate as may be seen from the literature and the
proceedings of recent conferences on grain growth. One of the main problems in
reaching an agreement remains the representation of the topology of the grain structure
both accurately and with a reasonable number of parameters.

11.2.4 Deterministic theories

If instead of considering the behaviour of an ‘average’ grain, we consider the growth and
shrinkage of every grain in the assembly then many of the topological difficulties of the
statistical models are bypassed. Hunderi and Ryum (1992b) discuss the relative merits of
statistical and deterministic models of grain growth and illustrate this with an analysis
of grain growth in one dimension, developed from the earlier deterministic model of
Hunderi et al. (1979). These authors pointed out that the statistical theories described in
§11.2.3 do not allow for the fact that a grain of a particular size can grow in an
environment where it is surrounded by smaller grains, but will shrink if surrounded by
larger grains, i.e. Rcrit in equation 11.13 varies with position. They proposed a linear

bubble model in which a bubble i makes contact with a number of other bubbles i� n to
iþ n, where n depends on the relative sizes of the bubbles. The pressure difference
between bubbles of different sizes leads to the transfer of material between the bubbles
and sets of coupled equations are solved to predict the size distribution and grain
growth kinetics of the bubbles, which are found to be close to those for parabolic
growth predicted by Hillert. Extension of such an analytical model to large numbers of
grains in 3-D is however, not currently practicable. The most promising deterministic
models of grain growth in recent years have been those based on computer simulation of
grain growth using the equation of motion and Monte-Carlo simulation methods, details
of which are discussed in §16.2.

11.2.4.1 Equation-of-motion computer simulation

In this approach, which has mainly been applied to 2-D at present, a starting grain
structure is specified, and this microstructure is then allowed to equilibrate by allowing
the boundaries and vertices to move according to specific equations. For example, a
boundary is adjusted to allow the angles at the triple points to be 120� and then the
boundary is allowed to move by an amount proportional to its radius of curvature, this
cycle being repeated over all boundaries a large number of times. This is essentially a
quantification of the logical arguments which suggested the sequence shown in figure
11.4. The key feature of this type of approach is that once the initial microstructure is
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constructed, the laws of motion formulated, and procedures for dealing with vertex
contact and grain switching (fig. 16.8) specified, then no further assumptions are needed
regarding topology, and the grain growth behaviour is thus truly deterministic.

A number of different authors have developed vertex models based on such methods
(§16.2.4), and these are reviewed by Anderson (1986) and Atkinson (1988). The slightly
different physical principles used have resulted in rather different grain size distributions
and growth kinetics, although the latter are generally close to parabolic. These
simulations have also shown that the initial growth kinetics are very sensitive to the
starting grain structure. In order to make a significant contribution to our
understanding of grain growth, this approach needs to be developed in 3-D, and
preliminary work in this area has been carried out Nagai et al. (1992) and Maurice
(2000).

11.2.4.2 Monte-Carlo computer simulation

The Monte-Carlo simulation technique, the principles of which are discussed in §16.2.1,
has been extensively used to study grain growth. Early tests of a 2-D model (Anderson
et al. 1984) showed that the shrinkage of a large isolated grain of area A, followed the
relationship

A�A0 ¼ �ct ð11:25Þ

where A0 is the grain size at t¼ 0 and c is a constant.

This leads to a parabolic relationship between grain size and time similar to that
predicted by many theories (equation 11.5) and shows that the simulation leads to a
linear dependence of boundary velocity on driving pressure (i.e. equation 5.1).

Significantly however, the growth of a 2-D grain structure such as is shown in figure
16.4, was found after an initial transient, to give a grain growth exponent of 2.44. This
differed significantly from the value of 2 predicted by the statistical theories discussed in
§11.2, and was closer to the experimentally measured values (tables 11.1 and 11.2).
Analysis of the computer-generated microstructures suggested that deviation from the
exponent of 2 was due to topological effects. In particular, the movement and rotation
of vertices was found to result in the redistribution of curvature between adjacent
boundaries, and it was suggested by Anderson et al. (1984) that this lowered the local
driving pressures for boundary migration, and was responsible for the higher grain
growth exponent. These simulations indicated the importance of the random motion of
boundaries which was first considered by Louat (1974) and also emphasised the
importance of the local environment of a grain. Extension of these simulations to 3-D
(Anderson et al. 1985) resulted in a grain growth exponent of 2.81 as compared to the
Rhines and Craig (1974) prediction of 3. At the time, these results therefore supported
the Rhines and Craig (1974) view that grain growth exponents larger than 2 were an
inevitable consequence of topological factors.

However, later simulations by the same group (Anderson et al. 1989a) run for longer times
with larger arrays indicated that the earlier results were incorrect as they did not represent
steady state grain growth and were influenced by the starting grain structure. The later
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results revealed a growth exponent of 2.04 in 2-D and 2.12 for a 3-D simulation, which are
very close to the n¼ 2 parabolic kinetics which are predicted on most theories, and
Anderson concluded that the asymptotic long-time growth exponent is 2.

The grain size distributions obtained by the Monte-Carlo simulations have been
analysed by Srolovitz et al. (1984a) and Anderson et al. (1989a). The grain size
distribution function, expressed in terms of R= �RR is found to be time invariant and close
to experimental measurements as shown in figure 11.6. The grain size distribution
determined from 2-D sections of the 3-D grain structure is closest to the Rayleigh
distribution suggested by Louat (1974).

11.2.5 Recent theoretical developments

As noted in §11.1.1, modelling of grain growth remains a remarkably active area, and
over the past decade over 20 papers have, on average, been published annually, most of
these being refinements of earlier models. The mean field approach has been improved
by taking account of spatial correlation among grains of different sizes (Marthinsen et
al. 1996), and whilst this gives the correct kinetics, the size distributions are not in
agreement with experiment unless further modifications are made (Mullins 1998a).
Stochastic theories, often using the Fokker–Planck formulation, are based on a given
grain growing in an environment which varies from grain to grain, and this gives a more
complete description of grain growth (Mullins 1998a,b, Pande and Rajagopal 2001).
However, a universally accepted stochastic theory of coarsening is not yet available
(Pande and Rajagopal 2001). Models which take into account the fact that the grain
boundary energies and mobilities in real materials are not isotropic have also been
formulated (Kazaryan et al. 2002).

Fig. 11.6. Histogram of the grain size distributions from 2-DMonte-Carlo simulations
compared with: (a) Theoretical distributions - log-normal (Feltham 1957), Hillert (1965)
dotted, and Rayleigh (Louat 1974) dashed, (b) Experimental data - for aluminium (Beck

1954) and MgO (Aboav and Langdon 1969), dashed line, (after Srolovitz 1984a).
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11.2.6 Which theory best accounts for grain growth in an ideal material?

The question should now be considered as to which theory or model, if any, is close to
accounting for grain growth in pure single-phase materials. That there is no obvious
answer is clear from the large number of approaches that are actively being pursued.
Ryum and Hunderi (1989) have given a very clear analysis of the statistical theories of
grain growth and shown that all make questionable assumptions.

We will briefly consider a number of basic questions:

(i) Is a grain growth exponent of 2 inevitable?

The discussions in this section have shown that the vast majority of theories predict
parabolic kinetics. The main dissent from this is the work of Rhines and Craig (1974)
which predicted n¼ 3. However, their analysis is no longer accepted, and the extension
of their work by Kurtz and Carpay (1980) predicted n¼ 2. Indications from early
Monte-Carlo simulations that a higher value of n was associated with topographic
factors (Anderson et al. 1984) have proved to be an artefact of the model, as later
simulations (Anderson et al. 1989a) found n� 2. In a review of the theory of the
coarsening behaviour of statistically self similar structures, i.e. those in which the
structure remains geometrically similar in a statistical sense, Mullins and Vinals (1989)
concluded that for curvature driven growth, such as occurs during grain growth, an
exponent of n¼ 2 is inevitable.

The evidence in favour of n¼ 2 being the prediction of theory for an ideal single-phase

material in which the boundary velocity is proportional to driving pressure and boundary

energies are isotropic, appears to be conclusive.

(ii) Can grain size distributions be used to prove or disprove a theory?

As discussed earlier in this section, the various theories predict different grain size
distributions, although it is usually predicted that the grain size distribution expressed in
terms of normalised grain size (R= �RR) will remain invariant during growth.

As shown in figure 11.6, the experimental data appear to be closest to the Rayleigh
distribution, with the narrow Hillert distribution giving the worst fit. More recent
reviews of experimental distributions (Pande 1987, Louat et al. 1992) have confirmed
this, and the results of later Monte-Carlo simulations (Anderson et al. 1989a) have
produced data consistent with the Rayleigh distributions. In comparing experiment with
theory it should be noted that as discussed in §11.2.3.2, measurements from 2-D sections
will only reflect the 3-D grain distribution if the grain structure is isotropic. Although
there have been numerous correlations of measured and predicted distributions, Frost
(1992) has shown that the grain size distribution predicted by individual statistical
models can be varied by very small adjustments to the models and cannot therefore be
used to prove the validity of a model.

(iii) Why is a grain growth exponent of 2 rarely measured?

As discussed in §11.1.4 and summarised in tables 11.1 and 11.2, grain growth exponents
of 2 are rarely found experimentally and average values are close to 2.4. If we accept
that theory predicts n¼ 2, then we must conclude that the larger measured exponents are

a consequence of the materials used not being ideal i.e. not consistent with the basic
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assumptions about the material which are incorporated in the models. We should recall
that the driving pressure for grain growth is very small (§11.1) and therefore any small
deviations from an ‘ideal material’ may have a very large effect on kinetics. There are
several important parameters of the material which may lead to loss of ideality and have
an influence on the kinetics:

� The initial grain structure is not equiaxed or is far from the steady state grain size

distribution. Changes in grain size distribution during growth are known to affect
experimentally measured grain growth kinetics (e.g. Takayama et al. 1992, Matsuura
and Itoh 1992) and have been shown to produce large exponents during the early
stages of growth in Monte-Carlo simulations (Anderson et al. 1984, 1989a).

� The presence or development of a texture. This would result in the occurrence of non-
uniform boundary energies and mobilities thereby invalidating equations 11.3 and
11.4 which form the basis of grain growth theory.

� The presence of very small amounts of a second-phase or other pinning defect. As
discussed in §11.1.4 this could account for high values of n.

These last two important factors are considered in more detail in the following sections.

11.3 GRAIN ORIENTATION AND TEXTURE EFFECTS IN GRAIN GROWTH

11.3.1 Kinetics

11.3.1.1 Experimental measurements

The rate of grain growth may be affected by the presence of a strong crystallographic
texture (Beck and Sperry 1949). This arises at least in part from a large number of grains
of similar orientation leading to more low angle (i.e. low energy and low mobility)
boundaries (§4.2). Thus the driving pressure (equation 11.3) and hence the rates of
growth are reduced. The texture may also alter during grain growth thereby affecting
the kinetics (Distl et al. 1982, Heckelmann et al. 1992). The evolution of textures during
grain growth is discussed in §12.4.4, and an example of the complex grain growth
kinetics which are found when there are concurrent texture changes is seen in figure
12.22b.

11.3.1.2 Theories

Novikov (1979) modified a statistical model of grain growth to include variations of
boundary energy and showed how the presence of texture would affect the kinetics of
grain growth. Abbruzzese and Lücke (1986) and Eichelkraut et al. (1988) have
incorporated the effects of texture into Hillert’s model of grain growth. They argued
that if a material contained texture components A,B,C . . . etc., then the uniform
boundary energies (�b) and mobilities (M) in equations 11.13 and 11.14 should be
replaced by specific values relating to the texture components, (�b

AB, MAB etc.) and that
the critical radius Rcrit in equation 11.13 would be different for each group of
boundaries. They then calculated the grain growth of each texture component and
showed that this might have a very strong effect on the grain size distribution and
growth kinetics. Figure 11.7 shows the predicted change in these parameters for a
material containing two texture components, A and B. The initial relative mean grain
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sizes are �RRB= �RRA ¼ 0:8, and the mobilities are MAB/MAA
¼ 5 i.e. the mobility of A grains

growing into B grains is five times that of A grains growing into A. It may be seen that
in this case the A component is strongly depleted during growth (fig. 11.7a,b), that the
grain size distribution is drastically altered, and that the relationship between �RR and t is
complex (fig. 11.7c). There is some evidence of agreement between the predictions of the
model and experimental measurements (Abbruzzese and Lücke 1986), although too
much reliance should not be placed on quantitative agreement because the relationships
between the mobility, energy and misorientation of grain boundaries are not known
accurately.

11.3.1.3 Computer modelling

Grest et al. (1985) extended their Monte-Carlo simulation studies of grain growth to
include variable boundary energies. They set the boundary energies according to the
Read–Shockley relationship (equation 4.6) and varied the energy range by altering �m,
the angle at which the energies saturate according to this equation. The simulation is
therefore close to representing the annealing behaviour of a microstructure comprising a
mixture of both high angle and low angle boundaries. However, as the mobilities of the

Fig. 11.7. Predicted grain growth in a microstructure containing texture components
A and B. (a) Initial grain size distribution, (b) Grain size distribution after growth, (c)

Growth kinetics, (after Abbruzzese and Lücke 1986).
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boundaries were not varied, the low angle (low energy) boundaries did not have the
correspondingly low mobilities expected in a real material (§5.2). They found that the
introduction of variable boundary energy led to an increase in the growth exponent (n)
to 4. The number of low angle boundaries increased during the anneal, compared with
the constant energy simulation and the grain size distribution was broader. This
simulation may be compared with the vertex simulation of recovery shown in figure
6.19, in which the low angle boundaries had both low energies and low mobilities and in
which a large growth exponent n and a decrease in boundary misorientation were also
found.

11.3.2 The effect of grain growth on grain boundary character distribution

As automated techniques for the rapid determination of crystallite orientations have
become widely available in recent years, there has been a growing interest in the effect of
grain growth and other annealing processes on grain boundary character, and
particularly on its distribution (GBCD), (e.g. figs. 4.2 and A2.1) which is as much a
quantitative measure of the microstructure of a material as is the grain size.

11.3.2.1 The frequency of special boundaries

There is a large body of evidence to show that the relative fractions of low-� boundaries
often change during grain growth. In metals of medium to low stacking fault energy,
where significant numbers of �3n boundaries are present, the populations of both these
and �1 boundaries tend to increase during grain growth. Thus, in nickel, Furley and
Randle (1991) reported an increase in �3 (twin) boundaries and a decrease in �5
boundaries during grain growth, and Randle and Brown (1989) found an increase in
both low angle (�1) and other low � boundaries during the annealing of austenitic
stainless steel. Pan and Adams (1994) reported a greatly increased number of special
boundaries (�1, �3 and �9) during grain growth of Inconel 699.

Some of the clearest evidence as to the change of boundary character during grain
growth in such materials has been obtained by Watanabe et al. (1989) who examined
the misorientations of boundaries after grain growth and abnormal grain growth in an
Fe–6.5%Si alloy which was annealed after rapid solidification. After a short annealing
time (fig. 11.8a) the distribution of misorientation is close to the random value (fig. 4.2),
but at long times (fig. 11.8c) it shifts markedly towards lower misorientations and a
strong {100} texture develops. The frequency of low � and low angle boundaries was
also found to increase markedly as grain growth proceeded as shown in figure 11.8d.

In fcc metals of high stacking fault energy, where there are few �3 boundaries, but in
which there are low angle (�1) boundaries, the mean misorientation and therefore
energy of these boundaries has been shown to decrease during subgrain growth when
there is no orientation gradient, as discussed in §6.5.2.1 and shown in figure 6.16b.

11.3.2.2 Interpretation of the data

It was argued in §6.5.3.4 that the annealing of a microstructure with a distribution of
boundary energies, the boundary tensions would inevitably lead to a decrease in the
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total amount of high energy boundary relative to low energy boundary. This has
been observed as discussed above, and has been shown to occur in both Monte-Carlo
(Grest et al. 1985, Holm et al. 2001) and vertex (Humphreys 1992b) computer
simulations.

In order to illustrate semi-quantitatively, the complexities of the problem we have run a
simple vertex simulation with an initial microstructure containing five generic types of
grain boundary:

1. Random high angle boundaries of constant energy and mobility
2. Low energy boundaries with low mobility (typified by LAGBs or �3 twins)
3. Low energy boundaries with high mobility (typified by low � boundaries in pure

metals)
4. High energy boundaries with low mobility
5. High energy boundaries with high mobility

Fig. 11.8. The effect of grain growth on grain boundary character in rapidly solidified
Fe–6.5wt%Si. (a) After an anneal for 600 secs at 1090�C, the measured distribution of

grain misorientations is close to that for randomly oriented grains, and, (b) the
frequency of special boundaries (shaded) is close to the random value (open), (c) After
annealing for 3500 at 1090�C the mean misorientation is reduced and, (d) the frequency
of low angle (�1) and other special boundaries is increased, (after Watanabe 1989).
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High or low energies or mobilities were given values of x5 or 1/5 respectively that of the
random boundaries. It was found that the distribution of boundary types changed
during grain growth as shown in figure 11.9.

It is seen that there is a tendency for the proportion of low energy boundaries to
increase and for high energy boundaries to decrease during grain growth. However,
the boundary mobility plays a significant role, and it is interesting that the largest
increase is predicted for low energy/low mobility boundaries such as LAGBs (�1)
and other low-� boundaries, which is in accord with the experimental results of
figure 11.8.

From the above considerations of the effects of grain orientation and boundary
character on grain growth, we conclude that there is experimental and theoretical
evidence that bulk and local orientation effects are important during grain growth, and
that these affect both the kinetics of grain growth and the microstructure. There is
growing evidence that the ideal materials with isotropic and unchanging boundary energy

which are addressed in the standard theories of grain growth simply do not exist, and
the most fruitful developments in the theory of grain growth in single-phase materials
will be those which take a more realistic account of orientation effects during grain
growth.

11.3.2.3 Grain boundary engineering

The grain boundary character distribution can be of industrial significance because
certain mechanical and physical properties of polycrystals depend on the nature of the
grain boundaries. It has long been known that the properties of low energy low �
boundaries differ from those of more general or ‘random’ high angle boundaries (e.g.
§5.3.2), and it is well established (e.g. Palumbo and Aust 1992, Aust et al. 1993,
Watanabe 1998) that the presence of such boundaries may improve the engineering

Fig. 11.9. Computer simulation of the change in boundary type during grain growth.
The boundary frequencies are expressed as multiples of the frequency of a

‘random’ boundary.
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performance of the material. Important properties of such boundaries may include:

� Lower rates of grain boundary sliding during creep.
� Resistance to high temperature fracture.
� Resistance to solute segregation, precipitation and intergranular embrittlement.
� Lower electrical resistivity.
� Resistance to corrosion.
� Resistance to stress corrosion.

It was first suggested by Watanabe (1984) that thermomechanical processing could be
used to control grain boundary distributions so as to improve the properties of
materials, and this has given rise to the concept of grain boundary engineering (GBE),

which is currently a very active research area, particularly for metals of medium and low
stacking fault energy (see e.g. Watanabe 1998). GBE has been successfully exploited
commercially in areas including the improvement in service performance of austenitic
stainless steels and nickel alloys in power plant by Ontario Hydro (Lehockey et al.
1998), and an improvement in the corrosion and creep resistance of lead-acid battery
grids (Lehockey et al. 1999).

Both recrystallization and grain growth may be used to increase the fraction of low �
boundaries, and many cycles of deformation and annealing are often employed in order
to optimise the material. For many applications, it is not simply the number of low
energy boundaries which is important, but also their spatial distribution. For example, if
failure occurs along grain boundaries of ‘random’ character, then it is important that
the low-� boundaries are situated so as to break up the network of these boundaries.
Thus the 3-dimensional connectivity of the boundaries is also an important parameter
(Randle 1999, Kumar et al. 2002, Schuh et al. 2003).

The science underlying the thermomechanical processing schedules used in grain
boundary engineering is surprisingly poorly understood, and most of the processing
schedules, some of which are patented, are purely empirical. In order to establish
scientifically-based methods for controlling the boundary character distributions, there
is a need for systematic research to establish how and why recrystallization affects the
number and distribution of special boundaries. The effect of grain growth on the number
of special boundaries is more predictable as discussed in §11.3.2.2 and shown in figures
11.8 and 11.9, although more detailed quantitative models are required.

11.4 THE EFFECT OF SECOND-PHASE PARTICLES ON GRAIN GROWTH

It was shown in §4.6 that second-phase particles exert a strong pinning effect (Zener
pinning) on boundaries, with the pinning pressure being determined primarily by the
size, volume fraction, interface and distribution of the particles. Because the driving
pressure for grain growth is extremely low, particles may have a very large influence
both on the kinetics of grain growth and on the resultant microstructures. It should be
noted that at the high temperatures at which grain growth occurs, the dispersion of
second-phase particles may not be stable. We will first deal with the behaviour of a
material containing a stable dispersion of particles and at the end of this section
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consider the cases where the particles themselves form, coarsen or migrate during the
process of grain growth. It should be noted that the quantitative relationships presented
below are based on the interaction of boundaries with a random distribution of non-
coherent equiaxed particles. For other types of particle the retarding pressure due to the
particles may be different as discussed in §4.6.1 and appropriate modifications to the
theory should therefore be made.

Although the discussion below is presented in terms of normal grain growth, many of the
considerations are also relevant to the growth of a subgrain structure during recovery.

Those aspects of the theory which are particularly relevant to subgrain growth are
further discussed in §6.6.

11.4.1 Kinetics

A dispersion of stable second-phase particles will reduce the rate of grain growth
because the driving pressure for growth (P in equation 11.3) is opposed by the pinning
pressure (Pz) due to the particles (equation 4.24). If this is incorporated into a simple
grain growth theory such as the Burke and Turnbull (1952) analysis (§11.1.3), the rate of
grain growth becomes

dR

dt
¼MðP� PzÞ ¼M

� �b
R
�
3Fv�b
2r

� �
ð11:26Þ

This predicts a growth rate which is initially parabolic, but which subsequently reduces
and eventually stagnates when P¼PZ.

Hillert (1965) extended his theory of normal grain growth to include the effects of
particle pinning on the kinetics of grain growth and on the grain size distribution. The
pinning pressure due to the particles results in a modification to the growth rate for
single-phase materials (equation 11.13)
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ð11:27Þ

where c¼ 0.5 for 2-D and 1 for 3-D and z¼ 3FV/4r

For grains in the size range 1/R� z/c, the net pressure for boundary migration will be
zero and therefore no growth or shrinkage will occur. Grains larger or smaller than this
will shrink or grow at a reduced rate. Hillert suggests that the mean growth rate will be
given by

d �RR
2

dt
¼

cM�b
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ð11:28Þ

which predicts a more gradual retardation of growth rate than equation 11.26. Hillert
(1965) also points out that the grain size distribution will be affected by particle pinning.
Abbruzzese and Lücke (1992) have extended this model and showed that the width of
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the grain size distribution during normal grain growth should be reduced by particle
pinning, for which there is some experimental evidence (Tweed et al. 1982).

11.4.2 The particle-limited grain size

It was shown many years ago by Zener (1948) that when the pressure on a boundary due
to particle pinning equalled the driving pressure for grain growth, growth would cease
and a limiting grain size would be reached. The existence of a limiting grain size is of
great practical importance in preventing grain growth during the heat treatment of
industrial alloys.

11.4.2.1 The Zener limit

In the situation which was first considered by Zener, the grain boundary is considered to
be macroscopically planar as it interacts with the particles and therefore the pinning
pressure (Pz) is given by equation 4.24. The driving pressure for growth (P) arises from
the curvature of the grain boundaries, and is given by equation 11.3. Grain growth will
cease when P¼Pz. i.e.

� �b
R
¼

3Fv �b
2r

ð11:29Þ

If the mean grain radius is taken to equal the mean radius of curvature (R) then we
obtain a limiting grain size

Dz ¼
4�r

3FV
ð11:30Þ

Setting �¼ 1 (some authors use other values), results in the well known Zener limiting

grain size

DZener ¼
4r

3FV
ð11:31Þ

It has long been recognised that this is only an approximate solution, and numerous
alternative approaches have been attempted. Hillert (1965) derived a limiting grain size
from equation 11.27 by equating 1/Rcrit with z/c for the case when R is large, giving a
limiting grain radius for the 3-D analysis, of 4r/3FV, i.e. a grain diameter of twice that of
equation 11.31 (� in equation 11.30 equal to 0.5). Gladman (1966) developed a
geometric model consisting of tetrakaidecahedral grains and considered the effect of
particles on the growth and shrinkage of the grains. He concluded that the limiting grain
size was given by

DG ¼
�r

3FV

3

2
�

2

Z

� �
ð11:32Þ

where Z is the ratio of the maximum grain size to the average grain size, a parameter
which is not readily calculated, but which is expected to lie between 1.33 and 2. Hillert’s
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(1965) grain growth theory gives Z¼ 1.6, and Gladman has suggested Z¼ 2. Using this
value, Gladman’s model, which has the same dependence on FV and r as equation 11.30,
predicts a limiting grain size which is smaller than that of equation 11.31, corresponding
to equation 11.30 with �¼ 0.375.

Numerous refinements to the Zener treatment have been carried out (e.g. Louat 1982,
Hellman and Hillert 1975, Hillert 1988) and these generally predict a limiting grain size

which is of a similar form to equation 11.30 with 0.25< a<0.5, i.e. considerably smaller
than that predicted by equation 11.31. The many refinements of the Zener relationship
have been comprehensively reviewed by Manohar et al. (1998).

11.4.2.2 Comparison with experiment

There are surprisingly few experimental results available to test these relationships
accurately in materials containing low volume fractions of particles, and in particular to
verify the dependence of DZ on FV. Gladman (1980) compared measurements of the
limiting grain size (DZ) from a number of investigations with his theory and found
reasonable agreement. Tweed et al. (1982) in a detailed study of the recrystallized grain
sizes and size distributions in three aluminium alloys containing very low volume
fractions of Al2O3, found limiting grain sizes which in some cases corresponded to very
small values of � in equation 11.30. However the data showed considerable scatter and it
is difficult to reconcile the trend of the data with any model of limiting grain size. The
limiting grain sizes obtained by Koul and Pickering (1982) after grain growth of iron
alloys containing volume fractions of �5� 10�3 of carbide particles are shown in figure
11.10. It may be seen that although the data are limited and scattered, there is fair
agreement with the theoretical line corresponding to equation 11.30 with �¼ 0.37, i.e.
Gladman’s model. Manohar et al. (1998) have analysed the available experimental
results for iron and aluminium alloys containing small volume fractions of second-phase
particles, and conclude that they are consistent with equation 11.30 with �� 0.26 (see
fig. 11.12).

Fig. 11.10. The particle-limited grain size in carbide-containing Fe–Ni–Cr alloys,
(data from Koul and Pickering 1982).
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11.4.2.3 Particle-boundary correlation effects

The analyses discussed in §11.4.2.1 assumed that the pinning pressure (Pz) was that for a
macroscopically planar boundary. However, as discussed in §4.6.2.2, when the
interparticle spacing is similar to the grain size, this assumption is not valid, and non-
random correlation of particles and boundaries must be taken into account. This will be
particularly important in materials with large volume fractions of particles. In this
situation, a limiting grain size (DZ1) is found by equating the driving pressure (equation
11.3) with the pinning pressure as given by equation 4.27.

DZ1 ¼ r
8�

3FV

� �1=2

	
1:6�1=2r

F1=2
V

ð11:33Þ

The limiting grain size given by equation 11.33 is very similar to that suggested by
Anand and Gurland (1975) for subgrain growth (fig. 6.29 and §6.6.2.1). It is however
likely that DZ1 which represents the situation when all particles are on boundary
corners but not all boundary corners are occupied by particles (fig. 4.25a), represents a
lower bound for the limiting grain size and that grain growth will actually continue to
occur until all grain corners are pinned, i.e. the grain size DC of equation 4.28 (fig.
4.25b).

DZC ¼ DC 	 N�1=3V 	
�r

F1=3
V

ð11:34Þ

where � is a small geometric constant.

Various authors (Hellman and Hillert 1975, Hillert 1988, Hunderi and Ryum 1992a)
have discussed this type of relationship, and Hillert (1988) suggests that �¼ 3.6.

The experimental measurements of limiting grain size in alloys containing large volume
fractions of particles (FV>0.05) are very scattered (Hazzledine and Oldershaw 1990,
Olgaard and Evans 1986) and although there is some indication that the limiting grain
size is inversely proportional to Fn

V, where n<1, the results are by no means conclusive.
If equation 11.34 is assumed to hold, then analyses of the results of Hellmann and
Hillert (1975) on steels and the data for Al–Ni of figure 11.14 give � as 3.3 and 3.4,
respectively. The subgrain data of Anand and Gurland (1975) which were analysed by
them in terms of equation 11.33 also fit equation 11.34, as shown in figure 6.29, with
�¼ 2.7.

Figure 11.11 shows the predicted variation of the limiting grain sizes DZ and DZC with
volume fraction according to equations 11.30 and 11.34 using values of the geometric
constants (�¼ 0.35, �¼ 3) which are consistent with experiment. It may be seen that the
curves cross at a volume fraction of �0.06. At volume fractions less than this the
particle-correlated limit (DZC) is unstable with respect to growth, and the uncorrelated
limit (DZ) is appropriate, whereas at higher volume fractions the limit will be DZC. In
practice there will be a gradual transition between correlated and uncorrelated pinning
as considered in §4.6.2.2, and this has been discussed by Hunderi and Ryum (1992a).
The actual volume fraction at which the transition from DZ to DZC occurs is not yet
firmly established either theoretically or experimentally, but theoretical estimates
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(Hillert 1988, Hazzledine and Oldershaw 1990, Hunderi & Ryum 1992a) put it within
the range 0.01<FV<0.1, which is consistent with figure 11.11. A recent analysis by
Manohar et al. (1998) of several experimental investigations, is shown in figure 11.12.
The experimental results are seen to be consistent with the analysis of figure 11.11,

Fig. 11.12. Experimental measurements of the limiting grain/particle size ratio as a
function of the volume fraction. The result are consistent with a transition from a F�1V to
a F
�1=3
V relationship at a volume fraction of �0.05, in agreement with the theoretical

analysis of figure 11.11, (after Manohar et al. 1998).

Fig. 11.11. The predicted variation with particle size and volume fraction of the
particle-boundary correlated limiting grain size (DZC) for �¼ 0.3, and the non-

correlated limiting grain size (DZ) for �¼ 0.35.
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suggesting a transition from a F�1V to a F
�1=3
V dependence of the limiting grain size, at

FV� 0.05.

The above considerations suggest that the effective limiting grain size (Dlim), will be the

larger of DZ or DZC, the solid line in figure 11.11, and that the transition will occur at a

volume fraction of �0.05.

11.4.2.4 Computer simulations

Extensive computer simulation of particle-controlled grain growth has been carried out
using the Monte-Carlo technique (§16.2.1). The initial work (Srolovitz et al. 1984b)
which was a 2-D simulation found a limiting grain size proportional to F

�1=2
V . However,

it has since been shown (Hillert 1988, Hazzeldine and Oldershaw 1990) that the situation
in 3-D is quite different and that the 2-D simulations of particle-limited grain growth are

not applicable to grain growth in a 3-D microstructure, because a particle in a 2-D

simulation is equivalent to a fibre in 3-D! Later three dimensional Monte-Carlo
simulations (Anderson et al. 1989b, Hazzledine and Oldershaw 1990) found a limiting
grain size in accordance with equation 11.34, although their value of � (�9) is
considerably larger than that found experimentally (§11.4.2.3). The earlier 3-D Monte-
Carlo simulations were often limited to a lattice of �1003 units, with a particle diameter
equal to one unit. Therefore for volume fractions less than �0.05, as may be seen from
equation 11.34, the limiting grain size approaches the size of the array, and accurate
results cannot be obtained. Such simulations were therefore limited to the range in
which DZC is expected to apply and could neither verify nor contradict the prediction
that the limiting grain size (Dlim) changes from DZ to DZC at a critical volume fraction.

Recent larger scale Monte Carlo simulations (Miodownic et al. 2000) have shown a F�1V

dependence of the limiting grain size, in agreement with the original Zener prediction of
equation 11.30, with �� 1, i.e. equation 11.31, for particle volume fractions in the range
0.025 to 0.15. However, there are only 4 data points, and these results contradict the
analytical considerations, other simulations and experiments discussed above, inasmuch
as they find no transition at high volume fraction to a D / F�1=3V .

Although there is now more general agreement that at low volume fractions, the Zener
relationship of equation 11.30 is obeyed, the question of the transition to a relationship

such as equation 11.34 at large volume fractions, remains unclear, requiring further

investigation.

11.4.2.5 A solute limited grain size?

As discussed in earlier sections, grain growth is promoted by the reduction in energy
(�EB) as the area of grain boundary decreases during growth. However for a solid
solution, the situation is more complicated because some of the solute will segregate to
the boundaries and lower the specific boundary energy (§5.4.2) whilst the remaining
solute will raise the energy of the material in the grain interior (�EG).

Consider a small-grained polycrystal containing a small amount of a solute which
segregates strongly to the boundaries (see fig. 5.30). Initially, most of the solute will be
in the grain boundaries. However, as the grains grow, the boundary area becomes
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insufficient to accommodate all the solute, and some will be rejected, raising the free
energy of the grain interiors.

At some stage of growth, the net free energy change, �EG-�EB, may become positive
and the driving force for grain growth vanishes, i.e. we have a limiting grain size which is
determined by solute. Such a concept was proposed by Weissmuller (1993) as being a
method of promoting grain stability in nanostructured materials. The theory was
further examined by Kirchheim (2002), who claimed that it would account for the
stability of nano-scale grains in Ni–P and Ru–Al alloys, and has also been discussed by
Gleiter (2000) in his review of nanostructured materials. The somewhat similar case of
vacancy-limited grain growth is discussed in §5.3.4.1.

11.4.3 Particle instability during grain growth

We have assumed so far, that the second-phase particles are stable during grain growth.
There are many situations in which this is not so, and in this section we examine the
consequences of instability of the second-phase during grain growth for three important
cases.

11.4.3.1 Precipitation after grain or subgrain formation

In some situations the second-phase particles may be precipitated after the formation of
a grain or subgrain structure. In this case the particles are unlikely to be distributed
uniformly and will form preferentially on the boundaries. The pinning pressure due to
the particles will therefore be greater than for a random particle distribution
(Hutchinson and Duggan 1978) as discussed in §4.6.2.3. If it is assumed that all the
particles are on boundaries and are randomly distributed on these boundaries, then the
pinning pressure is given by equation 4.36 and by equating this with the driving pressure
given by equation 11.3, the limiting grain size is

DZP ¼ r
8�

FV

� �1=2

ð11:35Þ

It is expected that in practice this situation will be more applicable to the growth of

subgrains during recovery (§6.6) than to grain growth, although no quantitative tests of
equation 11.35 have yet been reported.

11.4.3.2 Coarsening of dispersed particles during grain growth

An important situation is one in which grain growth has stagnated due to the particle
dispersion, but the particles coarsen (Ostwald ripening). In this situation the grain size
(D) is equal to Dlim as defined in §11.4.2.3, and the rate of growth is controlled by the
rate of change of particle size. Thus

dR

dt
¼ c

dr

dt
ð11:36Þ

where the constant c is 2�/3FV for low volume fractions and �/2F1=3
V for large volume

fractions.
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The rate of particle coarsening will depend on the rate controlling mechanism (Hillert
1965, Gladman 1966, Hornbogen and Koster 1978, Ardell 1972, Martin and Doherty
1976). If the particle growth is controlled by volume diffusion (diffusivity¼Ds) then
(Wagner 1961)

�RR
3
� �RR

3

0 ¼ c1Dst ð11:37Þ

whereas for particle growth controlled by diffusion along the grain boundaries
(diffusivity¼Db), which is commonly found for large volume fractions, as discussed
below, then

�RR4 � �RR4
0 ¼ c2Dbt ð11:38Þ

Figure 11.13 shows the kinetics of grain growth in an Al–6wt%Ni alloy which contains
a volume fraction of 0.1 of NiAl3 particles of initial diameter 0.3 mm. The grain growth
kinetics, which are controlled by the particle coarsening are seen to be in accord with
equation 11.37 over a wide temperature range. Figure 11.14 shows the relationship
between the size of the grains and the second-phase particles in the same alloy system.
The grain size is found to be proportional to the particle size as would be predicted by
equation 11.34. From the slope of the line, the constant � in the equation is found to be
3.4. A similar linear relationship between particle and subgrain size has been reported in
a commercial Al–Fe alloy (Forbord et al. 1997).

Coarsening of the particles by grain boundary diffusion will of course only affect those
particles which are on grain boundaries, and other particles will coarsen more slowly.
However, as grain growth occurs the boundaries will lose some particles and acquire
others, and therefore the overall particle coarsening rate may be uniform, although the
rate constant in equation 11.37 should include a correction factor to account for the
fraction of the time a particle is not attached to a boundary.

Fig. 11.13. The kinetics of grain growth when controlled by particle coarsening for an
Al–6wt%Ni alloy containing a volume fraction of 0.10 of NiAl3 particles, (Morris 1976).
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11.4.3.3 Coarsening of duplex microstructures

In a duplex alloy in which the volume fractions of the two phases are comparable, the
rate of coarsening of the structure is controlled by interdiffusion between the phases
over distances which are of the order of the size of the phases. In this situation the
coarsening rate is predicted to be dependent on the coarsening mechanism and
morphology and volume fractions of the phases (e.g. Ardell 1972, Martin and Doherty
1976). A detailed analysis of such phase growth is beyond the scope of this book, but
typically, it is expected that the growth exponent will be �3 for bulk diffusion control
(equation 11.37) and �4 for interface control (equation 11.38). Grewel and Ankem
(1989, 1990) have studied grain growth in a variety of titanium-based alloys containing a
wide range of volume fractions, such as the microstructure shown in figure 11.15 and
find that, as shown in figure 11.16, the growth exponent is not particularly sensitive to
volume fraction. However, it is found that as the temperature is raised from 700�C to
835�C the growth exponent n in Ti–Mn alloys decreases from 3.6 to 3.1, indicating a
change in growth mechanism from interface to bulk diffusion control with increasing
temperature.

Although Higgins et al. (1992) reported a growth exponent of �4 for duplex Ni–Ag
alloys, which is consistent with interface diffusion-controlled coarsening as discussed
above, they found that the rate constants were several orders of magnitude greater than
predicted by the theory of Ostwald ripening. They suggested that the non-spherical
shape of the particles (e.g. fig. 11.15) and the resulting curvature provide a driving force
for particle migration and coalescence.

11.4.4 Grain rotation

Randle and Ralph (1987) found that in a nickel-based superalloy in which grain growth
was inhibited by the second-phase particles, there was a much higher frequency (�50%)

Fig. 11.14. The relationship between grain size and particle diameter for an Al–
6wt%Ni alloy containing a volume fraction of 0.10 of NiAl3 particles, (Humphreys and

Chan 1996).
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of low-� boundaries than in the same alloy in which precipitation had not occurred. It
was suggested that this might be the result of grains rotating to produce lower energy
boundaries (cf. subgrain rotation in §6.5.4), although there is as yet no direct
experimental evidence to support this proposed mechanism, and as discussed in §11.3.2,
a high frequency of special boundaries may often arise as a result of grain growth by
boundary migration, or during the recrystallization of particle-containing alloys
(§7.7.4.3). However, 2-D molecular dynamics simulations (§6.5.4.5 and fig. 6.27) have
suggested that nanoscale grains may rotate at temperatures close to the melting
temperatures.

Fig. 11.16. Growth kinetics of the phases in a series of Ti–Mn alloys containing
different volume fractions at 973K, (a) �-phase, (b) �-phase, (Grewel and Ankem 1989).

Fig. 11.15. Microstructure of a Ti–6%Mn alloy containing 44% of �-phase (dark) and
56% of �-phase, (Grewel and Ankem 1990).
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11.4.5 Dragging of particles by boundaries

Equation 11.26 shows that grain growth in a particle-containing material occurs when
the driving pressure (P) is greater than the pinning pressure (Pz), and in the subsequent
discussions it has been assumed that growth ceases at a limiting grain size when these
two pressures are equal. However, the pressure exerted by a boundary on a particle may,
at high temperatures, be sufficient to drag the particle through the matrix, and in these
circumstances boundary migration will continue at a rate determined by the mobility of
the particle in the matrix (Mp) (Ashby 1980, Gottstein and Schwindlerman 1993).

The effect of driving pressure on boundary velocity is shown schematically in figure
11.17. For low driving pressures, (P<Pz) the boundary moves together with the
particles and the velocity is given by

v ¼
MPP

Ns
ð11:39Þ

where Ns is the number of particles per unit area of boundary.

However, when P>Pz the boundary breaks away from the particles and velocity is
given by M(P�Pz), where M is the intrinsic mobility of the boundary (i.e. equation
11.26).

There are several mechanisms by which the particles can move through the matrix
(Ashby 1980), including the migration of atoms (matrix or particle) by diffusion through
the matrix, through the particle or along the interface. Ashby (1980) has shown that in
general, coupled diffusion of both matrix and particle atoms is required. The resulting
particle mobilities are low and are generally negligible for stable crystalline particles.
However, for gas bubbles or amorphous or liquid particles, measurable particle
velocities may occur at very high temperatures (Ashby 1980).

Fig. 11.17. The grain boundary velocity as a function of the driving pressure (P). At
low driving pressures the boundary velocity is controlled by the dragging of particles,
but when the driving pressure exceeds the pinning pressure due to particles (Pz), the

boundary breaks free from the particles.
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Ashby and Centamore (1968) observed particle drag in copper containing various oxide
dispersions annealed at high temperatures. As particles are swept along with the
boundary, the number of particles on the boundary (Ns) increases as is seen in figure
11.18, and therefore the boundary velocity decreases according to equation 11.39. The
mobilities of amorphous SiO2, GeO2 and B2O3 particles were all measurable at high
temperatures, but significantly no migration of stable, crystalline Al2O3 particles was
detectable. This phenomenon is therefore unlikely to be important in alloys containing
stable crystalline particles. However, if such a mechanism were to occur in an
engineering alloy, the resulting increased concentration of particles at grain boundaries
would be expected to lead to increased brittleness and susceptibility to corrosion.

11.5 ABNORMAL GRAIN GROWTH

In the previous section we discussed the uniform growth of grains following
recrystallization. There are however, circumstances when the microstructure becomes
unstable and a few grains may grow excessively, consuming the smaller recrystallized
grains (fig. 11.1b). This process, which may lead to grain diameters of several
millimetres or greater is known as abnormal grain growth. Because this discontinuous

growth of selected grains has similar kinetics to primary recrystallization and has some
microstructural similarities, as shown in figure 11.19, it is sometimes known as
secondary recrystallization. Abnormal grain growth is an important method of
producing large grained materials and contributes to the processing of Fe–Si alloys
for electrical applications (§15.4). The avoidance of abnormal grain growth at high
temperatures is an important aspect of grain size control in steels and other alloys, and
Dunn and Walter (1966) give an extensive review of abnormal grain growth in a wide
variety of materials.

Fig. 11.18. Particle dragging by a boundary in copper containing amorphous SiO2

particles. The particle-free band behind the migrating boundary and the increased
particle concentration at the boundary are clearly seen, (Ashby and Palmer 1967).
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11.5.1 The phenomenon

The driving force for abnormal grain growth is usually the reduction in grain boundary
energy as for normal grain growth. However, in thin materials an additional driving
force may arise from the orientation dependence of the surface energy (§11.5.4).
Abnormal grain growth originates by the preferential growth of a few grains which have
some special growth advantage over their neighbours, and the progress of abnormal
grain growth may be described in some cases by the JMAK kinetics of equation 7.17
(Dunn and Walter 1966).

An important question to consider is whether or not abnormal grain growth can occur
in an ‘ideal grain assembly’ i.e. one in which there are no impurities and the boundary
energy is constant. As was shown by Thompson et al. (1987), the answer to this question
can be deduced from the theory of grain growth, and we will base our discussion on the
analysis presented in chapter 10.

Consider the growth of a particular grain of radius R in an assembly of grains of mean
radius �RR. The growth rates of the grain and the assembly are given by equations 10.10.
and 10.13 respectively, and the condition for the abnormal growth of the particular
grain is given by equation 10.14. For the ‘ideal’ material, all boundary energies and
mobilities are equal and the condition for abnormal growth then becomes

4R

RR
�
R2

RR2
� 4 > 0 ð11:40Þ

This condition is never achieved, although the left hand side equals zero when R¼ 2 �RR.

Thus a very large grain will always grow more slowly than the average grain relative to the

grain assembly, and will eventually rejoin the normal size distribution. Therefore abnormal

grain growth cannot occur in an ‘ideal grain assembly’.

Monte-Carlo simulation of abnormal grain growth (Srolovitz et al. 1985) has been
found to produce a similar result. Abnormal grain growth can therefore only occur

Fig. 11.19. Abnormal grain growth in Al–1%Mg–1%Mn annealed at 600�C.

Grain Growth Following Recrystallization 369



when normal grain growth is inhibited, unless the abnormally growing grain enjoys
some advantage other than size over its neighbours. The main factors which lead to
abnormal grain growth – second-phase particles, texture and surface effects, are
considered below.

11.5.2 The effect of particles

As discussed in §11.4.2, a dispersion of second-phase particles will prevent growth above
the limiting grain size. However, under certain circumstances, abnormal grain growth
may still be possible. This phenomenon has been analysed by many people, the best
known work being that of Hillert (1965) and Gladman (1966). In the following section,
we explore, using the cellular stability model of chapter 10, the conditions under which
abnormal grain growth occurs, and will reach conclusions which are in general
agreement with the earlier work.

11.5.2.1 Conditions for abnormal grain growth

As discussed in §11.5.1, abnormal grain growth is an example of unstable or
discontinuous growth of a cellular microstructure, and may be analysed accordingly.
We will assume for the moment that all the grain boundary energies and mobilities are
equal, and that the material, containing grains of mean radius �RR, and a volume fraction
FV of spherical particles of diameter d.

From equation 10.22 we see that d �RR=dt will become zero and thus normal grain growth
will cease when

� ¼
1

4
ð11:41Þ

where � ¼ 3FV
�RR=d (equation 10.21), and therefore the limiting grain size is

�RRLIM ¼
d

12FV
ð11:42Þ

The limiting grain size, �RRLIM as given by equation 11.42 is seen to be identical to the
limiting grain size (DZ) of equation 11.30, with the constant �¼ 0.25, which is within the
limits consistent with experimental observations (§11.4.2.1).

For �>0.25, it may be seen from inequality 10.12 that because d �RR=dt is always zero,
abnormal grain growth will always occur provided that dR/dt is positive. As shown in
figure 11.20, the minimum size of grain to initiate abnormal growth is small for �<0.5.
However, the maximum size ratio which can be achieved by abnormal growth is less
than 5 if �<0.1 (or FV=d < 1=30 �RR). Below this value of � we therefore find a
broadening of the grain size distribution rather than true abnormal growth. As � increases
above 0.25, the minimum size of grain required to initiate abnormal growth increases,
and it is seen from equation 10.23 that growth becomes impossible for even the largest
abnormally growing grain if �
 1 or

FV

d
>

1

3 �RR
ð11:43Þ
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which corresponds to a mean grain size (DM) of

DM ¼ 2RR ¼
2d

3FV
ð11:44Þ

and therefore above this dispersion level no grain growth of any type can occur. DM is
seen to be four times the limiting grain size for normal grain growth given by equation
11.42. These predictions (and figure 11.20) are similar to the conclusions reached in the
much more detailed model of Anderson et al. (1995). From our model we can identify 5
distinct regimes:

C5 0 Normal grain growth possible

0<C<0.1 Broadening of grain size distribution

0.1<C<0.25 Abnormal growth and normal grain growth

0.25<C<1 Abnormal growth but no normal grain growth

C> 1 No growth possible

These regimes are shown in figure 11.21 as a function of the mean grain size ð �RRÞ and the
dispersion level (FV/d). The upper limit of � for abnormal growth shown in figure 11.21
is the condition for migration of a planar boundary (R ¼ 1) and this assumes that
abnormal grain growth is not limited by the availability of a suitably large grain as a
‘nucleus’. However, as seen from figure 11.20, at larger values of � the minimum grain
size required to initiate abnormal grain growth increases and the largest available grain
will depend on the size distribution in the grain assembly. It is often found that
grain size distributions are log-normal and that the maximum is typically � 2:5 �RR (e.g.
fig.11.6). From equation 10.25, it can be shown that this corresponds to �� 0.6 and this
condition, which is a more realistic limit to abnormal grain growth is shown as a dotted
line in figure 11.21. It should be noted that this analysis is based on the pinning due to

Fig. 11.20. The effect of particles (expressed in terms of the dimensionless parameter
�) on the minimum grain size ratio (XMIN) required to initiate abnormal grain growth
in an ideal grain assembly, and the maximum ratio (XMAX) to which such grains may
eventually grow. Note that for small values of �, XMAX is sufficiently small that size
broadening rather than discontinuous grain growth will occur, (Humphreys 1997b).
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particles being the Zener pinning pressure (equation 4.24), and as discussed in §4.6.2.2
and §11.4.2.3, this may not be appropriate for large particle volume fractions.

Alloys which have been processed to produce grain sizes of less than a micrometre are
currently of considerable scientific and technological interest (§15.6), and the conditions
for abnormal grain growth in these materials are further discussed in §14.5.2.

11.5.2.2 Experimental observations

Abnormal grain growth has been reported for a large number of alloys containing
particle volume fractions of between 0.01 and 0.1, and details may be found in Dunn
and Walter (1966), Cotterill and Mould (1976) and Detert (1978). However, there is very
little evidence in the literature as to the precise conditions necessary to induce or prevent
this phenomenon. The fact that abnormal grain growth does not occur more readily in
particle-containing alloys may be due to a number of factors.

(i) In many cases the grain size produced during primary recrystallization is
significantly greater than the particle-limited grain size, and Hillert (1965) noted
that this is a very effective way of suppressing abnormal grain growth. According
to the analysis above, abnormal grain growth will not be possible if the grain size
is larger than four times the limiting grain size for normal grain growth. As
discussed in §9.2.1, the grain size produced by primary recrystallization is a
complex function of the particle parameters and the thermomechanical processing
route, and in alloys in which the ratio FV/r is large, particle pinning often results
in a large grain size after primary recrystallization. As an example, consider the
recrystallization data shown in figures 9.2 and 9.3 for particle-containing

Fig. 11.21. The various growth regimes for an ideal grain assembly as a function of
the matrix grain size ð �RRÞ and the particle dispersion level (FV/d). The dotted line

corresponds to �¼ 0.6, which is the condition for the abnormal growth of a grain of
diameter 2.5 times that of the assembly, (Humphreys 1997b).
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aluminium alloys which exhibit accelerated and retarded recrystallization. Data
for two specimens from each investigation (the extreme data points of each
figure), are summarized in table 11.3. It can be seen that particularly for the
material showing retarded recrystallization (material code1), the measured grain
size is very much larger than the limiting grain size (DZ) as given by equation
11.42, (or equation 11.30 with �¼ 0.25). If the measured grain sizes are compared
with DM, the critical grain size for abnormal grain growth (equation 11.44), it
may be seen that abnormal grain growth will not be possible in materials 1 or 2,
but is highly likely in materials 3 and 4.

(ii) The occurrence of abnormal grain growth may be limited by ‘nucleation’
rather than growth considerations. Strong evidence for this comes from the large
number of experimental observations which show that abnormal grain growth is
particularly likely to occur as the annealing temperature is raised and as the
particle dispersion becomes unstable. This is clearly shown in the classic early
work of May and Turnbull (1958) on the effect of MnS particles on abnormal
grain growth in silicon iron. Gladman (1966, 1992) has discussed the unpinning
of boundaries under conditions of particle coarsening, with particular reference
to steels in which the control of abnormal grain growth is of great technological
importance, and the grain growth behaviour of some steels is shown in
figure 11.22.

Plain carbon steels without grain refining additives show a coarsening of the grain size
by normal grain growth. However, if conventional grain growth inhibitors (AlN) are
present (fig. 11.22a), then small grains persist up to a temperature of �1050�C at which
temperature coarsening of the particles allows abnormal grain growth to occur,
producing a very large grain size. At temperatures of �1200�C, most of the particles
have dissolved and normal grain growth then results. However, if a coarser dispersion

Fig. 11.22. Abnormal grain growth in steels. (a) TiN grain growth inhibitors are very
effective in preventing normal grain growth, but their coarsening and dissolution lead to

abnormal grain growth at high temperatures, (b) Coarse, insoluble, non-metallic
inclusions are less effective in preventing normal grain growth, but their stability

prevents abnormal grain growth, (Gladman 1992).
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of more stable particles (e.g. oxides or titanium carbonitrides) is present (fig. 11.22b)
then all grain growth is inhibited to very high temperatures.

According to the analysis of §11.5.2.1 as summarised in figure 11.21, if an alloy which is
stable against abnormal growth is annealed at a temperature where the particles coarsen
or the volume fraction decreases (i.e. lower FV/d), abnormal grain growth will only
become possible if the mean grain size does not increase proportionately. The onset of
abnormal grain growth may then depend on local destabilization of the grain structure
by removal or weakening of critical pinning points (Gladman 1966), leading to local
inhomogeneous grain growth. The resulting broader grain size distribution may then
enable the ‘nucleation’ of abnormal grain growth.

11.5.2.3 Computer simulation

Monte-Carlo simulations of abnormal grain growth in the presence of particles have been
carried out in 2-D (Srolovitz et al. 1985) and 3-D (Doherty et al. 1990). In 2-D, although
normal grain growth stagnated due to particle pinning, abnormal grain growth could not be
induced.However, in the 3-D simulations, large artificially-induced grains were found to be
stable and to consume the smaller pinned grains, which is in keeping with the analytical
models discussed above and with the experimental observations. This result again
emphasises the necessity of using 3-D simulations for the modelling of particle pinning.

11.5.3 The effect of texture

The inhibition of normal grain growth by texture (§11.3) may lead to the promotion of
abnormal grain growth, and a review of the extensive work in this field is given by Dunn
and Walter (1966) and Cotterill and Mould (1976). Perhaps the best example of this is
the intensification of the Goss texture in silicon iron, which is discussed in (§15.4). In
many cases normal grain growth is restricted by a number of factors such as particles
and free surfaces in addition to texture, in which case it is difficult to quantify the role of
texture in abnormal grain growth.

If a single strong texture component is present in a fine-grained recrystallized material,
then abnormal grain growth commonly occurs on further annealing at high

Table 11.3

Conditions for abnormal grain growth in some particle-containing aluminium alloys.

Code Alloy FV d
(mm)

Grain
Size
(mm)

DM

(mm)
DZ

(mm)
Reference

1 Al–Cu 0.053 0.56 1483 11 2.5 Doherty and
Martin (1964)

2 Al–Cu 0.03 1.01 68 67 15.7

3 Al–Si 0.0012 0.7 160 583 114 Humphreys
(1977)

4 Al–Si 0.01 4.9 44 490 16.3
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temperatures. This has been clearly demonstrated for the cube texture in aluminium
(Beck and Hu 1952), copper (Dahl and Pawlek 1936, Bowles and Boas 1948, Kronberg
and Wilson 1949), nickel alloys (Burgers and Snoek 1935) and silicon iron (Dunn and
Koh 1956).

Abnormal grain growth is possible in such a situation because within a highly textured
volume the grain boundaries have a lower misorientation and hence a lower energy and
mobility than within a normal grain structure. If some grains of another texture
component are present, then these introduce boundaries of higher energy and mobility
which may migrate preferentially by a process which is therefore closely related to
primary recrystallization of a material containing subgrains (chapter 7).

Analyses of abnormal grain growth in a textured material have been carried out by e.g.
Abbruzzeze and Lücke (1986) and Eichelkraut et al. (1988). The analysis discussed
below is based on the model of Humphreys (1997a), which is presented in chapter 10. A
somewhat similar analysis which considered only the effects of boundary mobility and
not boundary energy, was given by Rollett et al. (1989b).

Abnormal grain growth tends to occur when there is at least one strong texture
component. If this texture component is very sharp, then the mean misorientation ( ���) is
small and there are many low angle boundaries within a particular texture variant,
whereas if the texture component is more diffuse then the boundaries have a higher
mean misorientation. Typically, a texture component is defined as containing
orientations within �15� of some ideal orientation and therefore we could take
��� ¼ 15� as an upper limit for the grain/subgrain assembly in our model. There will be
other grains in the microstructure which have either ‘random’ orientation, are part of
another texture component or are a crystallographic variant of the main component.
Thus we expect the microstructure to contain many high angle boundaries ( ��� > 15�) and
these will provide the ‘nuclei’ for discontinuous growth. The situation will therefore be
similar to that shown in fig.10.3b for ��� in the range 5� to 15�, where we note that
nucleation of abnormal grain growth will be easy, but the maximum size ratio of the
abnormally growing grains will be small if the main texture component is diffuse (large
���). For example figure 10.3b indicates that if �� ¼ 10�, the maximum size of abnormally
growing grains will be approximately five times the mean grain size.

Diffuse textures: Hutchinson and Nes (1992) noted that in steel, Cu and Al, grains in the
main texture components were larger than average, and similar results were reported
during grain growth of Al–Mn (Distl et al. 1982, Weiland et al. 1988). These results may
be demonstrating the transitional normal/abnormal behaviour predicted for grain
assemblies with medium angle boundaries discussed above, for which broad size
distributions rather than true abnormal growth, are predicted.

Strong textures: If the main texture component is strong, then ��� is small and stronger
abnormal growth is predicted (fig.10.3a). This is amply confirmed by experiment, a
good example being silicon iron (§15.4). The model presented in chapter 10, predicts
that the maximum size ratio of the abnormal grains to the grain assembly
should decrease as the main texture component is weakened, and quantifies the
relationship between these parameters. Although this is broadly in line with
experiments, there are few measurements quantitatively relating texture strength and
grain size distribution.
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11.5.4 Surface effects

It has long been recognised that abnormal grain growth is often easier in thin sheets
than in bulk materials. This phenomenon is of particular importance in the production
of sheet Fe–Si alloys (Dunn and Walter 1966) as is discussed in §15.4. The control of
grain size and texture in the thin polycrystalline films used for electronic applications
provides a more recent example of the importance of surface effects in grain growth
(Abbruzzese and Brozzo 1992, Thompson 1992). Abnormal grain growth may occur in
thin sheets if normal grain growth is inhibited by the free surfaces or by particles or
texture as discussed above, and is particularly favoured if the texture leads to a
significant variation of surface energy among the grains, as illustrated by the recent
work of Greiser et al. (2001).

11.5.4.4 Surface inhibition of normal grain growth

When grains are of the order of the thickness of the sheet, then the grains are
significantly curved only in one direction, and from equation 11.1, the driving pressure
is seen to fall towards half that of a grain within a 3-D assembly. Thermal grooving at
the junction between the boundary and the free surface, due to the balance between the
surface tension and grain boundary tension may also exert a pinning effect on the
boundary. The classic work on thermal grooving is due to Mullins (1958) and this
treatment has been extended by Dunn (1966), Frost et al. (1990) and Frost et al. (1992).
An application of Frost’s computer model to the simulation of grain growth in thin
metallic strips is shown in figure 16.9.

The following is a simplified treatment of the phenomenon.

Consider a single grain in a sheet of thickness S, whose boundaries are pinned by
thermal grooving as shown in figure 11.23. The angle �g at the thermal groove as shown
in figure 11.23b is determined by the balance between the forces arising from the
boundary energy �b and the surface energy �sur and is given by

�g ¼ arcsin
�b

2 �sur

� �
¼

�b
2 �sur

ð11:45Þ

The boundary can be pulled out of the groove if, at the surface, it deviates from the
perpendicular by an angle of ��g, which corresponds to a radius of curvature of

R2 ¼
S

2�g
ð11:46Þ

which can be equated with a pinning pressure due to thermal grooving of

Pg ¼
�2
b

S �sur

ð11:47Þ

This is opposed by the pressure P (equation 11.3) due to the in-plane curvature R1,

(fig.11.23a). Thus, no grain growth will occur if Pg
P, and therefore the limiting grain
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size for normal grain growth (DL) is given as

DL ¼
S c1 �sur

�b

ð11:48Þ

where c1 is a small constant.

Mullins (1958) proposes that c1¼ 0.8, and computer simulations by Frost et al. (1992)
give c1� 0.9. Typically, it is found that �sur� 3�b, suggesting a limiting size for normal
grain growth in thin films of 2 to 3 times the thickness, which is consistent with
experimental measurements in metals (Beck et al. 1949) and semiconductor films
(Palmer et al. 1987).

11.5.4.5 Abnormal grain growth in thin films

There is considerable evidence that abnormal grain growth can readily occur in thin
films or sheets in which normal grain growth has stagnated for the reasons discussed
above (Beck et al. 1949, Dunn and Walter 1966, Palmer et al. 1987, Thompson 1992).
That this abnormal grain growth is not driven by boundary curvature is clear from
observations which show that the direction of motion may be in the opposite direction
to that predicted by the curvature (Walter and Dunn 1960b), and from measurements
which show that the boundary velocity is constant with time (Rosi et al. 1952, Walter
1965). Two dimensional computer simulations of grain growth are particularly effective
for studying abnormal grain growth in thin films (Srolovitz et al. 1985, Rollett et al.
1989b, Frost and Thompson 1988).

The driving pressure for abnormal grain growth comes from the orientation dependence
of the surface energy. If the difference in surface energy between two adjacent grains is
��sur then the driving pressure for boundary migration is Ps¼ 2��sur/S. As this has to
overcome the drag due to thermal grooving the growth velocity will be

v ¼MðPs�Pg Þ ¼
M

S
2��sur �

�2b
�sur

� �
ð11:49Þ

The velocity of abnormal grain growth is thus predicted to be inversely proportional to
the sheet thickness, which is consistent with experiments on metal sheet (Foster et al.
1963) and semiconductor thin films (Palmer et al. 1987).

Fig. 11.23. Thermal grooving of a thin specimen. (a) The shape of an isolated grain in
a thin sheet, (b) Thermal grooving at the surface.
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The condition that abnormal grain growth should occur is given from equation 11.49 as

2� �sur >
�2
b

�sur

ð11:50Þ

or

� �sur

�sur

> c2
�b
�sur

� �2

ð11:51Þ

where c2 is a small constant which is given by Mullins (1958) as 1/6 and Frost et al.
(1992) as �1/4.

Taking �sur/�b¼ 3, then equation 11.51 indicates that abnormal grain growth will occur
if ��sur>0.02�sur, i.e. only a few percent difference in surface energy is required to
promote abnormal grain growth in thin specimens.

Surface energy variations between grains are a consequence of grain orientation.
Therefore the analysis above, which takes account of the variation of surface energy due
to orientation but not the variation of the grain boundary energy due to texture, must be
an oversimplification.

The surface energy of a grain is of course very dependent on the surface chemistry, and
it has long been known that abnormal grain growth in Fe–Si alloys is affected by the
atmosphere (Detert 1959, Walter and Dunn 1959, Dunn and Walter 1966). Recent work
on grain oriented, silicon steel sheet (§15.4) has shown the importance of small alloying
additions in determining surface energies.

11.5.5 The effect of prior deformation

There has been interest in the effects of small strains on grain growth and abnormal
grain growth (Riontino et al. 1979, Randle and Brown 1989). The observation that a
small prior plastic strain may prevent normal grain growth and promote the onset of
anomalous grain growth has long been known (§1.2.1.3) and is probably best interpreted
in terms of primary recrystallization by strain induced boundary migration (§7.6.2) rather
than as a grain growth phenomenon.
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