
August 7, 2003 Serguei A. Mokhov,
mokhov@cs.concordia.ca

1

gcc Tutorial

COMP 444/5201
Revision 1.1

Date: January 25, 2004

August 7, 2003 Serguei A. Mokhov,
mokhov@cs.concordia.ca

2

Contents

• Intro
• Options
• Examples

August 7, 2003 Serguei A. Mokhov,
mokhov@cs.concordia.ca

3

What is gcc?
• gcc

– stands for GNU C/C++ Compiler
– a popular console-based compiler for *NIX platforms and others; can

cross-compile code for various architectures
– gcc to compile C programs; g++ for C++
– can actually work with also ADA, Java, and a couple other languages
– gcc performs all of these:

• preprocessing,
• compilation,
• assembly, and
• linking

– we are to use it for our last C assignment

• As always: there is man gcc

August 7, 2003 Serguei A. Mokhov,
mokhov@cs.concordia.ca

4

Options

• There are zillions of them, but there are some the
most often used ones:
– To compile: -c
– Specify output filename: -o <filename>
– Include debugging symbols: -g
– GDB friendly output: -ggdb
– Show all (most) warnings: -Wall
– Be stubborn about standards: -ansi and -pedantic
– Optimizations: -O, -O*

August 7, 2003 Serguei A. Mokhov,
mokhov@cs.concordia.ca

5

Options: -c

• gcc performs compilation and assembly of
the source file without linking.

• The output are usually object code files, .o;
they can later be linked and form the
desired executables.

• Generates one object file per source file
keeping the same prefix (before .) of the
filename.

August 7, 2003 Serguei A. Mokhov,
mokhov@cs.concordia.ca

6

Options: -o <filename>

• Places resulting file into the filename specified
instead of the default one.

• Can be used with any generated files (object,
executables, assembly, etc.)

• If you have the file called source.c; the defaults
are:
– source.o if -c was specified
– a.out if executable

• These can be overridden with the -o option.

August 7, 2003 Serguei A. Mokhov,
mokhov@cs.concordia.ca

7

Options: -g

• Includes debugging info in the generated
object code. This info can later be used in
gdb.

• gcc allows to use -g with the optimization
turned on (-O) in case there is a need to
debug or trace the optimized code.

August 7, 2003 Serguei A. Mokhov,
mokhov@cs.concordia.ca

8

Options: -ggdb

• In addition to -g produces the most GDB-
friendly output if enabled.

August 7, 2003 Serguei A. Mokhov,
mokhov@cs.concordia.ca

9

Options: -Wall

• Shows most of the warnings related to possibly incorrect code.
• -Wall is a combination of a large common set of the -W options

together. These typically include:
– unused variables
– possibly uninitialized variables when in use for the first time
– defaulting return types
– missing braces and parentheses in certain context that make it ambiguous
– etc.

• Always a recommended option to save your bacon from some
“hidden” bugs.

• Try always using it and avoid having those warnings.

August 7, 2003 Serguei A. Mokhov,
mokhov@cs.concordia.ca

10

Options: -ansi and -pedantic

• For those who are picky about standard
compliance.

• -ansi ensures the code compiled complies with the
ANSI C standard; -pedantic makes it even more
strict.

• These options can be quite annoying for those who
don’t know C well since gcc will refuse to
compile unkosher C code, which otherwise it has
no problems with.

August 7, 2003 Serguei A. Mokhov,
mokhov@cs.concordia.ca

11

Options: -O, -O1, -O2, -O3, -O0,
-Os

• Various levels of optimization of the code
• -O1 to -O3 are various degrees of optimization

targeted for speed
• If -O is added, then the code size is considered
• -O0 means “no optimization”
• -Os targets generated code size (forces not to use

optimizations resulting in bigger code).

August 7, 2003 Serguei A. Mokhov,
mokhov@cs.concordia.ca

12

Options: -I

• Tells gcc where to look for include files (.h).
• Can be any number of these.
• Usually needed when including headers from

various-depth directories in non-standard places
without necessity specifying these directories with
the .c files themselves, e.g.:
#include “myheader.h” vs.
#include “../foo/bar/myheader.h”

August 7, 2003 Serguei A. Mokhov,
mokhov@cs.concordia.ca

13

For Your Assignments

• For your assignments, I’d strongly suggest
to always include -Wall and -g.

• Optionally, you can try to use -ansi and –
pedantic, which is a bonus thing towards
your grade.

• Do not use any optimization options.
• You won’t need probably the rest as well.

August 7, 2003 Serguei A. Mokhov,
mokhov@cs.concordia.ca

14

Example
• For example, if you have the following source files in some

project of yours:
– ccountln.h
– ccountln.c
– fileops.h
– fileops.c
– process.h
– process.c
– parser.h
– parser.c

• You could compile every C file and then link the objet files
generated, or use a single command for the entire thing.
– This becomes unfriendly when the number of files increases; hence, use

Makefiles!

• NOTE: you don’t NEED to compile .h files explicitly.

August 7, 2003 Serguei A. Mokhov,
mokhov@cs.concordia.ca

15

Example (2)

• One by one:
– gcc -g -Wall -ansi -pedantic -c ccountln.c
– gcc -g -Wall -ansi -pedantic -c parser.c
– gcc -g -Wall -ansi -pedantic -c fileops.c
– gcc -g -Wall -ansi -pedantic -c process.c

• This will give you four object files that you need
to link and produce an executable:
– gcc ccountln.o parser.o fileops.o process.o -o ccountln

August 7, 2003 Serguei A. Mokhov,
mokhov@cs.concordia.ca

16

Example (3)

• You can do this as well:
– gcc -g -Wall -ansi -pedantic ccountln.c parser.c fileops.c process.c -o ccountln

• Instead of typing this all on a command line, again: use a
Makefile.

August 7, 2003 Serguei A. Mokhov,
mokhov@cs.concordia.ca

17

Example (4)
Simple Makefile with use of gcc could look like this
CC=gcc
CFLAGS=-g -Wall -ansi -pedantic
OBJ:=ccountln.o parser.o process.o fileops.o
EXE=ccountln

all: $(EXE)

$(EXE): $(OBJ)
$(CC) $(OBJ) -o $(EXE)

ccountln.o: ccountln.h ccountln.c
$(CC) $(CFLAGS) -c ccountln.c

...

