DIGITAL DESIGN COEN 312	Instructor: Drs. A. J. Al-Khalili & M. Nekil
Final exam. May 2000	Time Allowed 3:00 hrs.
No. of pages: 2	
No Calculators, books or notes are allowed	
No Calculators, books or notes are allowed	

- a) Consider the circuit given in Fig. 1 below. Assume each gate, including the inverter has a 12 ns t_{pd} . The inputs are currently POR = 111. How does the OUT responds when Q makes a sudden change from HI to LO.
- b) A safe has 20-button keyboard. In order to unlock the safe, a teller must simultaneously press buttons 2,7,8,13, and 19. If extra buttons are pressed at the same time, the safe will not unlock. When a button is pressed, it can send a HI output to a logic circuit. Design a combinational circuit where HI output will represent the unlocked safe. Assume you have independent access to each digitized key.
- c) Prove the De Morgan Theorem.

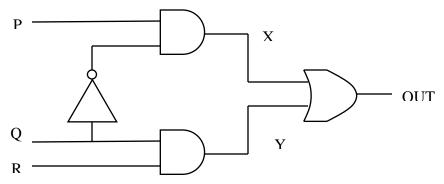


Fig. 1 Circuit for timing Analysis of Q.1a

Question 2

- a) Design a full subtractor
- b) Implement a) above using $4 \rightarrow 1$ Multiplexers and minimal extra logic if required.
- c) Implement a) above using $3 \rightarrow 8$ decoder and minimal extra logic if required

Question 3

- a) What size of ROM is required to implement a BCD to 7-segment decoder.
- b) Design a BCD to 7-segment decoder. Given the content of the Rom IN A TABLE FORMAT. With each word as, abcdefg. Please refer to Fig. 2 below for the segment's destination. Assume that the illegal numbers will be displayed as E.

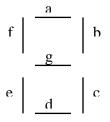


Fig. 2. 7-Segment Display of Q3

a) Design an adder that can add two BCD numbers.

b) Give a circuit Diagram

Question 5

An engine needs to go through four strokes, all of equal duration.

On the 1st stroke the inlet valve opens and outlet valve is closed.

On the 2^{nd} stroke the value is closed.

On the 3rd stroke a spark is delivered.

On the 4th stroke the outlet valve is opened for the exhaust to vent.

Then the first stroke comes again and the cycle repeats.

Design a controller for the system with a clock for the input and with 3 outputs:

O1 to open inlet

O2 to open outlet

O3 to ignore spark

Assume that if the control to open a valve is not asserted the valve closes (ie. Spring loaded).

Question 6

- a) Analyze the circuit given in Fig. 3 below fully (give excitation equations, transition table, state table and state diagram):
- b) Initially Do has been set to "1" (for one clock period). Draw the timing diagram for y0, y1, y2 for 5 clock cycles. Assume each Flip flop has a delay of 10 ns.

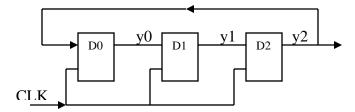
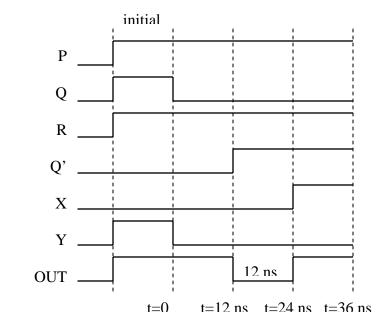
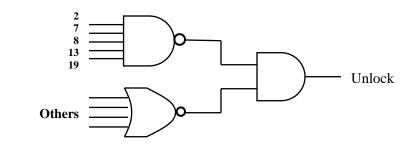
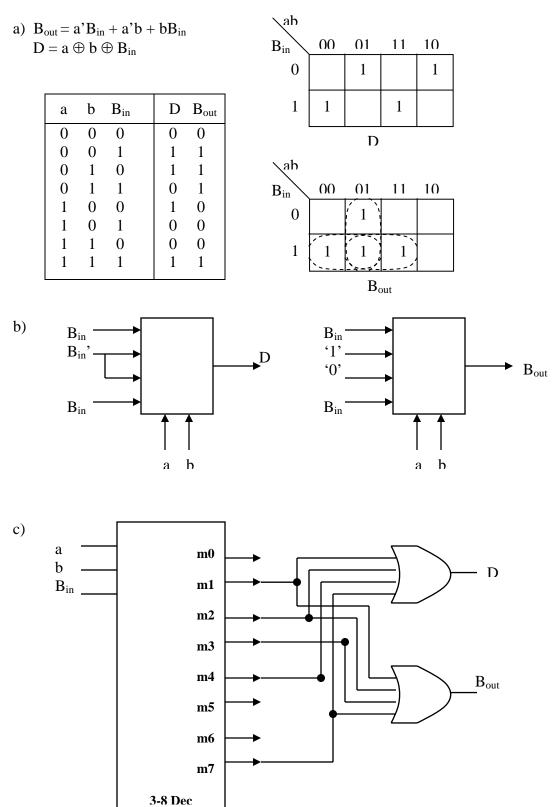
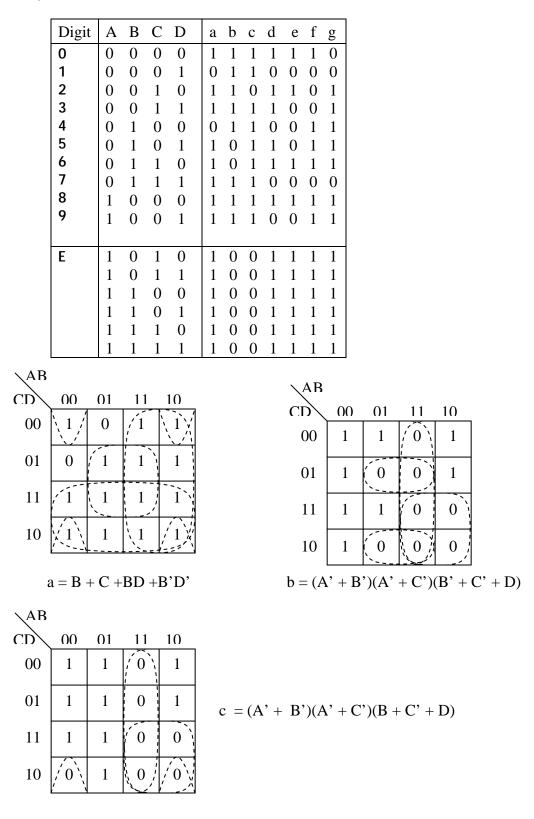



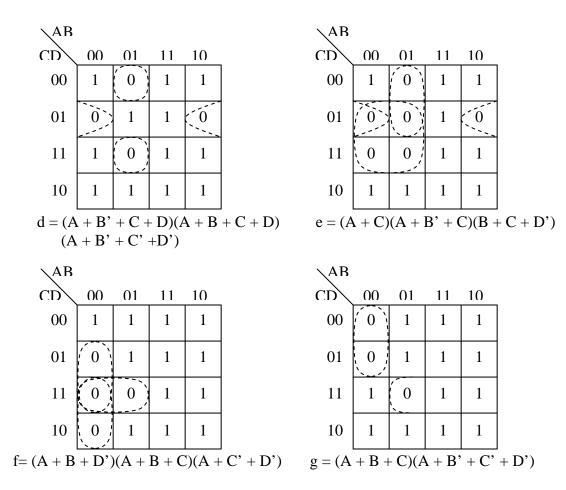
Fig. 3. Circuit to be analyzed in Q.6.

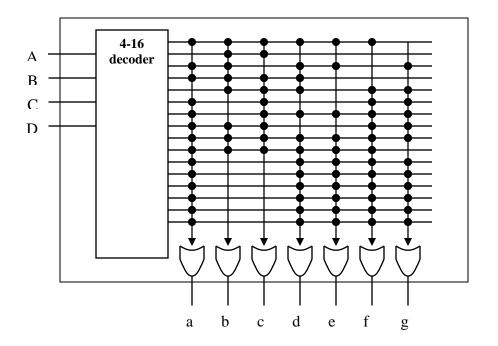

Solutions

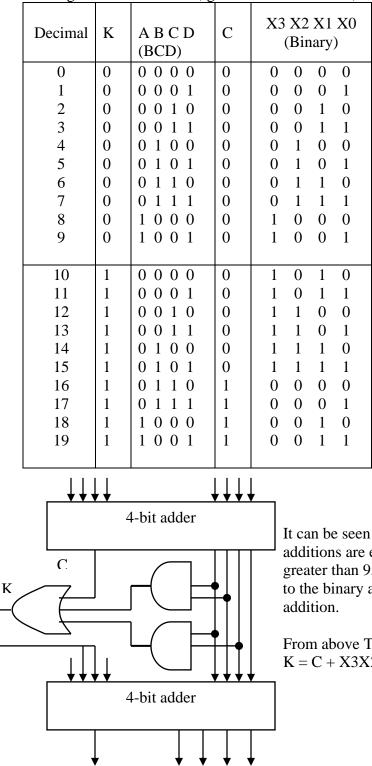


b)

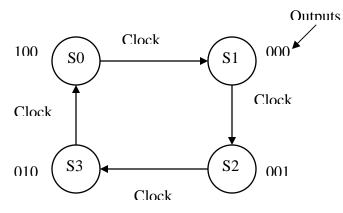

c) (A.B)' = A' + B'By Truth Table


Α	В	A.B	(A.B)'	A'	B'	A' + B'	
0	0	0	1	1	1	1	
0	1	0	1	1	0	1	
1	0	0	1	0	1	1	
1	1	1	0	0	0	0	
							Equ

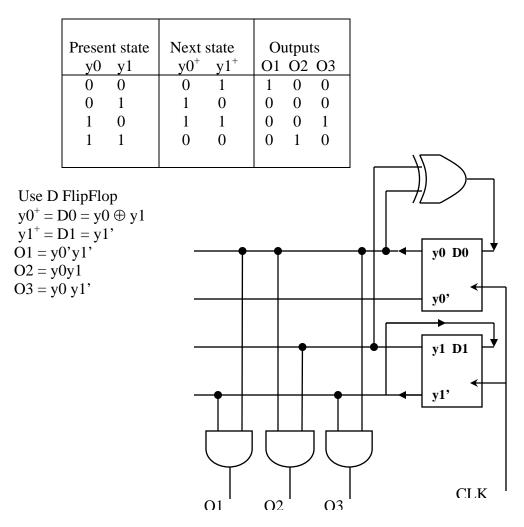

Question 3


a) 10 words of 7 bits = 70 bits with error bits

ROM Implementation:



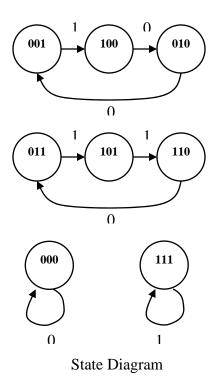
Adding two BCD numbers,	give a	maximum	of 19	ie9	+9+1=19
mulling two DCD nullious,	SIVUU	maximum	or 17,	1.0)	$ \mathbf{j} 1 = 1$


It can be seen that from 0-9 the two additions are equal. For numbers greater than 9, we had add a 6 (0110) to the binary addition to get the BCD addition.

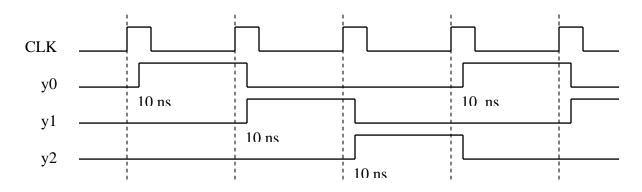
From above Truth Table, we have: K = C + X3X2 + X3X1.

There are four states, are for each stroke, output are O1 O2 O3.

This is a simple counter $S0 \rightarrow S1 \rightarrow S2 \rightarrow S3 \rightarrow S0 \rightarrow ...$



a) Excitation Equations $y0^+ = D0 = y2$


 $y0^+ = D0 = y2$ $y1^+ = D1 = y0$ $y2^+ = D2 = y1$ Output = Z = y2

Transition Table and State Table

Present State y0 y1 y2	Next state $y0^+ y1^+ y2^+$	Output Z
0 0 0	0 0 0	0
0 0 1	1 0 0	1
0 1 0	0 0 1	0
0 1 1	1 0 1	1
1 0 0	0 1 0	0
1 0 1	1 1 0	1
1 1 0	0 1 1	0
1 1 1	1 1 1	1

Timing Diagram

