DIGITAL DESIGN COEN 312	Drs. A. J. Al-Khalili \& M. Nekili	
Time Allowed 1 hr. 10min.		Feb 17, 2000
Answer All Questions	1 page	No Calculator or other material is allowed

Question 1
a) Using Boolean Algebra minimize the following functions:

$$
\begin{align*}
& \mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{AB}{ }^{\prime}+\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{ABC} \tag{2/25}\\
& \mathrm{~F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\mathrm{A}^{\prime} \mathrm{C}+\mathrm{AB}+\mathrm{BC}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D} \tag{2/25}
\end{align*}
$$

b) Translate the following Specification into a Boolean Function.

A buzzer (Z) is to sound if the key (K) is in the ignition and the door (D) is open, or the key is out of the ignition and brake (B) is off, or if the door is open and the brake is off. All other times the buzzer must be silent.
(2/25)
Question 2
a) Using a Truth Table or Boolean algebra show how the following 2-input gates can be configured as inverters: NAND gate, NOR gate, XOR gate.
b) Realize the following expression with i) NAND, ii) NOR only, giving circuit diagrams for both cases. Get the minimal configuration.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{A}+0+\mathrm{C}+(\mathrm{D} .1 . \mathrm{C})$
c) Give the minimal POS (Product Of Sums) of
$F(A, B, C, D)=\Sigma m(0,1,2,3,8,9,10,11)+d(4,6,12,14)$
d) Plot the following function on the K-Map.
$F(A, B, C, D)=[A \oplus B \oplus C \oplus D]+A B$
e) Give the minimal SOP (Sum Of Products) of the function given by the following
K-map: (2/25)

$\lambda^{A B}$				
$\cos 00$		01	11	10
00	1	X		1
01		1	1	X
11		1	1	X
10	1			1

Question3
a) Using Quine-McClusky (QM) method minimize the following function: $F(A, B, C, D)=\Sigma m(0,2,5,7,8,10,13,15)+d(4,9,11)$
b) Each XOR gate in the circuit below has a propagation delay tpd of 10 ns . Give a timing diagram of $\mathrm{X}, \mathrm{Y}, \mathrm{OUT}$ when the inputs change simultaneously from PQRS $=0000$ to PQRS $=1001$.

Solutions

Question 1
a) $\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{AB}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{ABC}$
$=A^{\prime}\left(B+B^{\prime}\right)+A\left(B^{\prime}+B\right)+A B C$
$=A^{\prime}+A+A B C$
$=1+\mathrm{ABC}$
$=1$
b) $\mathrm{F}=\mathrm{A}^{\prime} \mathrm{C}+\mathrm{AB}+\mathrm{BC}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}$
$=A^{\prime} C+A B+A^{\prime} B C^{\prime} D$
$=A^{\prime}\left(C+C^{\prime} B D\right)+A B$
$=A^{\prime}(C+B D)+A B$
$=A^{\prime} C+A^{\prime} B D+A B$
$=A^{\prime} C+B\left(A^{\prime} D+A\right)$
$=A^{\prime} C+B(D+A)$
$=A^{\prime} C+B D+A B$
c) buzzer Sounds $=\mathrm{Z}$

Key is in ignition $=\mathrm{K}$
Door is open = D
Brake is off $=\mathrm{B}$
$Z=K D+K^{\prime} B+D B=K D+K^{\prime} B$
Question 2
a) Configure NAND, NOR, XOR as inverter
i) NAND $\mathrm{F}=(\mathrm{A} . \mathrm{B})^{\prime}$ let $\mathrm{A}=\mathrm{B}=\mathrm{A} \quad \mathrm{F}=(\mathrm{A} . \mathrm{A})^{\prime}=\mathrm{A}^{\prime}$

ii) $\operatorname{NOR} \mathrm{F}=(\mathrm{A}+\mathrm{B})^{\prime}$ let $\mathrm{A}=\mathrm{B}=\mathrm{A} \quad \mathrm{F}=(\mathrm{A}+\mathrm{A})^{\prime}=\mathrm{A}^{\prime}$

iii) $\mathrm{XOR} \quad \mathrm{F}=\mathrm{AB}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}$ let $\mathrm{A}=1 \quad \mathrm{~F}=1 . \mathrm{B}^{\prime}+0 . \mathrm{B}=\mathrm{B}^{\prime}$

b) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{A}+0+\mathrm{C}+(\mathrm{D} .1 . \mathrm{C})$

$$
=\mathrm{A}+\mathrm{C}
$$

i) NAND $F=(A+C)^{\prime \prime}=\left(A^{\prime} . C^{\prime}\right)^{\prime}$

ii) NOR $F=(A+C)^{\prime \prime}$

c) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,2,3,8,9,10,11)+\mathrm{d}(4,6,12,14)=\mathrm{B}^{\prime}$

$\triangle A B$				
C. ${ }^{\text {A }}$	00	01	11	10
00	1	X	X	1
01	1	: 0	0	1
11	1	: 0	0	1
10	1	X	X	1

d) $F(A, B, C, D)=[A \oplus B \oplus C \oplus D]+A B$

AR		01	11	0
00		1	1	1
01	1		1	
11		1	1	1
10	1		1	

e) $\mathrm{F}=\mathrm{BD}+\mathrm{B}^{\prime} \mathrm{D}^{\prime}$

AR				
Co	00	01	11	10
00	1-	X		-1-
01		1	1	X
11		1	1	X
10	1			\cdots

Question 3

a)

0 2	$\begin{aligned} & 0,2(2) \\ & 0,4(4) a^{*} \\ & 0,8(8) \end{aligned}$	$\begin{array}{ll} 0,2,8,10(2,8) & \mathrm{c} \\ 8,9,10,11(1,2) & \mathrm{d} \\ 5,7,13,15(2,8) & \mathrm{e} \\ 9,11,13,15(2,4) & \mathrm{f} \\ \hline \end{array}$										
4 8 8 5 9 10	$\begin{array}{\|l\|} \hline 2,10(8) \\ 4,5(1) b^{*} \\ 8,9(1) \\ 8,10(2) \\ \hline \end{array}$											
			0	2	5		7	8		10	13	15
			1									
		b			1							
$\begin{array}{\|l\|} \hline 10 \\ 7 \\ 11 \\ 13 \\ \hline \end{array}$	$\begin{aligned} & \hline 5,7(2) \\ & 5,13(8) \\ & 9,11(2) \\ & 9,13(14) \\ & 10,11(1) \\ & \hline \end{aligned}$	c*	1	1				1	1			
		d						1	1			
		e^{*}			1		1			1	1	
										1	1	
5	7,15 (8)	$\mathrm{F}=\mathrm{c}+\mathrm{e}=\mathrm{BD}+\mathrm{B}^{\prime} \mathrm{D}^{\prime}$										
	11, 15 (4)											
	13, 15 (2)											

b) Total delay $=30 \mathrm{~ns}$ " PQRS" $=0000 \rightarrow 1001$ Choose period $=40 \mathrm{~ns}$

