Question 1 (Use Boolean Algebra for Question 1)

1.a Simplify F:

$$
\begin{equation*}
F(A, B, C, D)=\left[A B+A^{\prime}\right] \cdot\left[A B+A^{\prime} C+B C\right]^{\prime} \tag{2marks}
\end{equation*}
$$

1.B Simplify to obtain minimum SOP
$\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\left[\mathrm{XY} \oplus\left(\mathrm{X}+\mathrm{Y}^{\prime}\right)\right][(\mathrm{W} \odot(\mathrm{W}+\mathrm{Y})] \quad$ (2 marks)
1.b Simplify to obtain minimum SOP
$F(a, b, c, d)=a^{\prime} b^{\prime}\left(c+d^{\prime}\right)(1+0)+a^{\prime}\left(c^{\prime} d+c d^{\prime}+1\right)+\left(a^{\prime} b+0\right) c d$
1.c Minimize the following circuit, draw final minimized circuit.

You have single rails available to you.

Question 2

2.a Give minimal SOP for $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$) given by the following K-map (2 marks)

Identify the Prime Implicants and Essential Prime Implicant clearly.

2.b Give the POS of $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=(\mathrm{A}+\mathrm{BD})(\mathrm{B}+\mathrm{AD}) \quad(1 \mathrm{mark})$
2.c Give the minterm list of $F(A, B, C, D)=B \quad$ (1 mark)
2.d Give the minimal NOR-NOR implementation of $F(A, B, C, D)=A C^{\prime}+A(D+C B) \quad$ (2 marks)

Question 3

a) Given function F1 given in the K-map below determine F2 using F1.
b) Draw the final circuit of F2

$$
\text { (} 6 \text { Marks) }
$$

$\mathrm{F} 1=\mathrm{A} \oplus \mathrm{B} \oplus \mathrm{C} \oplus \mathrm{D}$

$\overbrace{\text { ci }}^{\text {ab }}$		01	11	10
00	1	1		1
01	1		1	
11	1	1	1	1
10	1	1		

F2

Question 4

Draw the timing diagram for $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})$ for the following consecutive inputs:
$\mathrm{ABC}=000,010,110,010,111$ ($* *$ follow these vectors in order given) .
Assume the following gate delays,

