

COEN 212: DIGITAL SYSTEMS DESIGN I Lecture 10: Sequential Circuits Analysis and Design

Instructor: Dr. Reza Soleymani, Office: EV-5.125, Telephone: 848-2424 ext.: 4103.

Lecture 10: Objectives of this lecture

- In this lecture, we talk about:
	- Analysis of the Sequential Circuits.
	- Design of the Sequential Circuits.

Lecture 10: Reading for this lecture

• Digital Design by M. Morris R. Mano and Michael D. Ciletti, 6th Edition, Pearson, 2018: – Chapter 5 (5.5, 5.7 and 5.8)

Analysis of Sequential Circuits:

- **Analysis:** to describe how a circuit works
- **Example:**

State equations for this circuit are

 $A(t+1)=A(t)x(t)+B(t)x(t)$ $B(t+1)=A'(t)x(t)$

- and the output $y(t)=[A(t)+B(t)]x'(t)$
- Slide 4 The state-table or state-transition table will have 8 entries, since there are 2 flip-flops resulting in $2^2 = 4$ states and one input resulting in two possibilities.

Analysis of Sequential Circuits:

• State-transition table:

• It can also be drawn as:

Lecture 10: State Diagram:

• Another way to represent sequential circuits is state diagram: a bubble for each state:

- If the system can move from a state to another there is a line between the two.
- The input that will cause that transition nad the resulting output are shown on the cord.

Output equations and FF input equations:

- A sequential circuit has two parts:
	- A memory section consisting of a set of flip flops, and
	- A set of logic gates that form either the outputs or the next state of the circuit.
- The behavior of the circuit is defined in terms of:
	- **output equations** presenting the output as a function of the input and the present state of the circuit.
	- **state equations** or flip-flop input equations presenting the next state as a function of the input and the present state.
- In the sequential circuit shown in the previous slide, we have two flip-flops. So, we have two <u>flip-flop input equations</u>.
- Using D flip-flops:

$$
D_A = Ax + Bx
$$

$$
D_B = A'x
$$

and the <u>output equation</u> is $y = (A + B)x'$

Analysis with D-flip-flops:

- Example: Consider the circuit shown having 1 D FF.
- FF input equation is $D_A = A \oplus x \oplus y$ and output equation is $z =$ $(x+y)A$
- Showing time explicitly: $D(t) = A(t + 1) = A(t) \bigoplus x(t) \bigoplus y(t)$ and $z(t) = (x(t) + y(t))A(t)$
- Circuit has one FF, so it has two states. The state diagram is shown on the bottom right.

Analysis with D-flip-flops:

- Since there are two inputs, there need to be four arrows leaving each state.
- However, in this case, the arrows for inputs 00 and 11 (also 01 and 10) often coincide and one arrows can be used as a combination of two overlapping arrows.
- The state transition table is:

Example: Take the following circuit with two JK Flip-flops:

The Analysis involves the following steps:

1) Find the FF input equations. In this case they are:

 $J_A = B$, $K_A = Bx'$

$$
J_B = x', K_B = A \oplus x = A'x + Ax'
$$

2) Find the binary values of each input equation.

3) Use the characteristic table or characteristic equation of the JK FF, i.e., $Q(t + 1) = IQ' + K'Q$ to find the next state.

4) derive the state transition table.

Note: In this case there is no output. Otherwise we had to consider the output equations.

Analysis with JK-flip-flops:

Using the above procedure, we derive the following state transition table:

• We have used:

 $A(t + 1) = J_A A' + K'_A A$

And

 $B(t + 1) = J_B B' + K'_B B$

The state diagram is:

- When you analyze circuits that have T-FF, use $Q(t + 1) = T \oplus Q$.
- **Example:** Consider this circuit with two T-flip-flops:

Analysis:

1) $T_A = Bx$, $T_B = x$, $y = A + B$

2) Find T_A , T_B , for different combinations of $A(t)$, $B(t)$, $x(t)$. 3) $A(t + 1) = T_A \bigoplus A = T'_A A + T_A A' = (Bx)'A + (Bx)A' = AB' + Ax' + C$ $A' Bx$ and $B(t + 1) = x \bigoplus B$.

State transition table:

The state Diagram is:

This is an example of Moore Machines

The outputs can be placed inside the bubbles (states):

A Moore Machine or More FSM, looks like this:

The other type of sequential circuits are Mealy Machines:

Design of Sequential Circuits:

- We saw that analysis starts with a circuit diagram and ends up with a functional description, e.g., in the form of a state diagram,
- Design or synthesis starts with a functional description and the end result should be a circuit diagram

Lecture 10: State Reduction:

- A functional description, may contain redundant states.
- Redundant states act the same: i.e., for a given input go to the same state and generate the same output.
- State reduction is used to combine redundant states.
- Remember that m flip-flops give us up to 2^m states. Reducing the number of states, can, possibly, reduce the number of FFs.
- A circuit with 6 states needs 3 FFs. Reducing the number of states to 4 we only need 2 FFs. But going from 8 to 5, there is no saving.
- In reducing the number of states, usually, the following fact is used:
- Two states are equivalent if, for every input, they generate the same output and transition to the same next state or to an equivalent state.

Lecture 10: State Reduction: Example

• Example: State Transition Table:

• g and e are equivalent. Remove g.

State Reduction: Example

• The reduced-state Transition Table:

• The reduced state diagram is:

Lecture 10: State Assignment

- We need to assign binary values to states.
- We use binary values from 0 to 2^{m-1} to states.
- If the number of states s is not a power of 2, we can use the first s numbers counting from 0 to $s - 1$. For example, for the above 5-state circuit, we may use 000, 001, 010, 011, and 100.
- **Gray code** can also be used. In a Gray code any two consecutive numbers differ in only one bits, this may allow some simplification in logic design.
- Third option **one-hot** assignment: use *s* bits to represent each state, only one bit is equal to 1 in each state index, i.e., one flip-flop per state. This makes the design of combinational circuit trivial, but, results in waste of flip-flops and is only wise if there are lots of flip-flops on the chip.

State Assignment

These three state assignment schemes are shown in this state transition table:

• Reduced-state transition table using binary assignment:

Lecture 10: Design Procedure

A design process consists of the following tasks:

- 1. Translating the word description of the circuit into a state diagram.
- 2. Reducing the number of states if possible.
- 3. Assigning binary values to the states.
- 4. Obtaining the binary-coded state table.
- 5. Choosing the type of flip-flops to be used.
- 6. Writing down the flip-flop input equations and output equations.
- 7. Drawing the circuit diagram.

Design Procedure: Example

Example: Design a circuit that detects the occurrence of three or more consecutive ones.

• State Transition Table:

Lecture 10: Design using D Flip-flop

Assume that we choose D flip-flops.

Then the flip-flop input equations are:

$$
D_A(A, B, x) = A(t + 1) = \sum (3.5.7)
$$

and,

$$
D_B(A, B, x) = B(t + 1) = \sum (1, 5, 7)
$$

The output equation is

 $y(A, B, x) = \sum(6,7).$

Lecture 10: Design using D Flip-flop

Using the K-maps we find D_A , D_B , and y:

Lecture 10: Excitation Tables

- An **excitation table** is a table that determines the value of the input equations for each state transition. Such a table is called an excitation table.
- For D flip-flops are simple and we don't need an excitation table.
- JK or T flip-flops are more tricky.

Excitation Table: a) for a JK FF: b) For a T FF:

Example: Design a circuit for this state diagram using JK FF:

• State Transition Table:

Example: Design a circuit using JK flip-flop for:

The Logic Diagram is:

State Diagram of a 3-bit Counter:

• State Transition Table:

FF input equations:

• The Logic Diagram:

Lecture 10: Knowledge Check

- **Question 1:** A counter counts from 0 to 17. How many FFs do we need to implement it?
- a) 18, b) 5, c) 3, d) 4
- **Question 2:** A counter with 6 FFs can count up to:
- a) 16, b) 32, c) 63, d) 31