

COEN 212: DIGITAL SYSTEMS DESIGN I Lecture 10: Sequential Circuits Analysis and Design

Instructor: Dr. Reza Soleymani, Office: EV-5.125, Telephone: 848-2424 ext.: 4103.

Lecture 10: Objectives of this lecture

- In this lecture, we talk about:
 - Analysis of the Sequential Circuits.
 - Design of the Sequential Circuits.

Lecture 10: Reading for this lecture

 Digital Design by M. Morris R. Mano and Michael D. Ciletti, 6th Edition, Pearson, 2018:
– Chapter 5 (5.5, 5.7 and 5.8)

Example:

Analysis of Sequential Circuits:

- Analysis: to describe how a circuit works
- State equations for this circuit are

 $A(t+1)=A(t)\times(t)+B(t)\times(t)$ B(t+1)=A'(t)\times(t)

- and the output y(t)=[A(t)+B(t)]x'(t)
- The state-table or state-transition table will have 8 entries, since there are 2 flip-flops resulting in $2^2 = 4$ states and one input resulting in two possibilities.

Analysis of Sequential Circuits:

State-transition table:

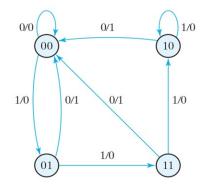
Presen	nt state	Input	Next	state	Output
A(t)	B(t)	x(t)	A(t + 1)	B(t + 1)	<i>y</i> (<i>t</i>)
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

• It can also be drawn as:

Presen	t state	Next state		Output			
		<i>x</i> =	= 0	<i>x</i> =	= 1	x = 0	<i>x</i> = 1
Α	В	Α	В	Α	В	y	у
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

Lecture 10: State Diagram:

Another way to represent sequential circuits is state diagram: a bubble for each state:



- If the system can move from a state to another there is a line between the two.
- The input that will cause that transition nad the resulting output are shown on the cord.

Output equations and FF input equations:

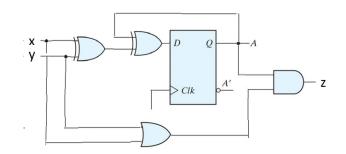
- A sequential circuit has two parts:
 - A memory section consisting of a set of flip flops, and
 - A set of logic gates that form either the outputs or the next state of the circuit.
- The behavior of the circuit is defined in terms of:
 - **output equations** presenting the output as a function of the input and the present state of the circuit.
 - **state equations** or flip-flop input equations presenting the next state as a function of the input and the present state.
- In the sequential circuit shown in the previous slide, we have two flip-flops. So, we have two <u>flip-flop</u> input equations.
- Using D flip-flops:

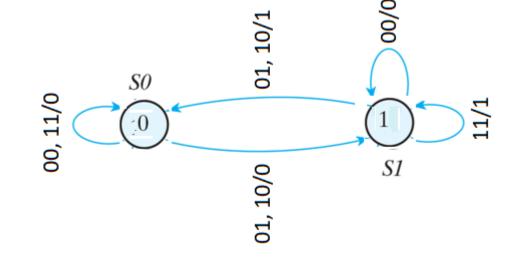
$$D_A = Ax + Bx$$
$$D_B = A'x$$

• and the <u>output equation</u> is y = (A + B)x'

Analysis with D-flip-flops:

- Example: Consider the circuit shown having 1 D FF.
- FF input equation is $D_A = A \oplus x \oplus y$ and output equation is z = (x + y)A
- Showing time explicitly: $D(t) = A(t+1) = A(t) \oplus x(t) \oplus y(t)$ and z(t) = (x(t) + y(t))A(t)
- Circuit has one FF, so it has two states. The state diagram is shown on the bottom right.



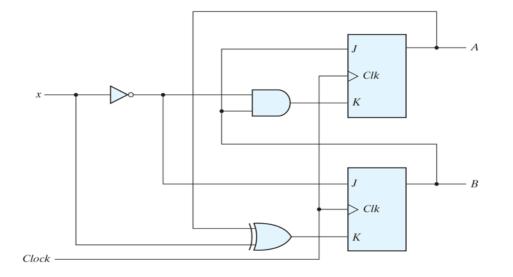


Analysis with D-flip-flops:

- Since there are two inputs, there need to be four arrows leaving each state.
- However, in this case, the arrows for inputs 00 and 11 (also 01 and 10) often coincide and one arrows can be used as a combination of two overlapping arrows.
- The state transition table is:

Present state	Inp	outs	Next state	Output
A(t)	x(t)	y(t)	A(t+1)	z(t)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	0
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Example: Take the following circuit with two JK Flip-flops:



The Analysis involves the following steps:

1) Find the FF input equations. In this case they are:

$$J_A = B$$
 , $K_A = Bx'$

$$J_B = x', K_B = A \oplus x = A'x + Ax'$$

2) Find the binary values of each input equation.

3) Use the characteristic table or characteristic equation of the JK FF, i.e., Q(t + 1) = JQ' + K'Q to find the next state.

4) derive the state transition table.

Note: In this case there is no output. Otherwise we had to consider the output equations.

Analysis with JK-flip-flops:

Using the above procedure, we derive the following state transition table:

Currer	it state	Input		FF Ir	nputs		Next	state
A(t)	B(t)	x(t)	J_A	K _A	J_B	K _B	A(t + 1)	B(t + 1)
0	0	0	0	0	1	0	0	1
0	0	1	0	0	0	1	0	0
0	1	0	1	1	1	0	1	1
0	1	1	1	0	0	1	1	0
1	0	0	0	0	1	1	1	1
1	0	1	0	0	0	0	1	0
1	1	0	1	1	1	1	0	0
1	1	1	1	0	0	0	1	1

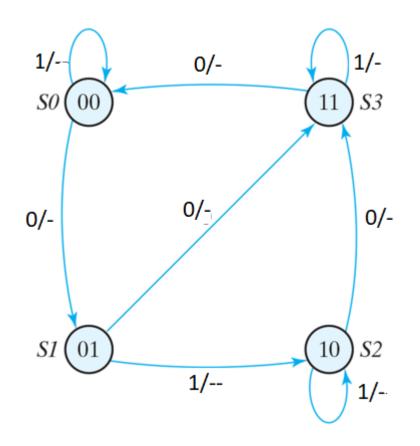
• We have used:

 $A(t+1) = J_A A' + K'_A A$

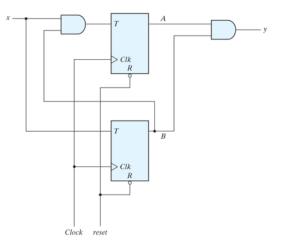
And

 $B(t+1) = J_B B' + K'_B B$

The state diagram is:



- When you analyze circuits that have T-FF, use $Q(t + 1) = T \oplus Q$.
- **Example:** Consider this circuit with two T-flip-flops:



Analysis:

1) $T_A = Bx, T_B = x, y = A + B$

2) Find T_A , T_B , for different combinations of A(t), B(t), x(t). 3) $A(t+1) = T_A \bigoplus A = T'_A A + T_A A' = (Bx)'A + (Bx)A' = AB' + Ax' + A'B' = C B A = T'_A A + T_A A' = (Bx)'A + (Bx)A' = AB' + Ax' + A'B' = C B A = T'_A A + T_A A' = (Bx)'A + (Bx)A' = AB' + Ax' + A'B' = C B A = T'_A A + T_A A' = (Bx)'A + (Bx)A' = AB' + Ax' + A'B' = C B A = T'_A A + T_A A' = (Bx)'A + (Bx)A' = AB' + Ax' + A'B' = C B A = T'_A A + T_A A' = (Bx)'A + (Bx)A' = AB' + Ax' + A'B' = C B A = T'_A A + T_A A' = (Bx)'A + (Bx)A' = AB' + Ax' + A'B' = C B A = T'_A A + T_A A' = (Bx)'A + (Bx)A' = AB' + Ax' + A'B' = C B A = T'_A A + T_A A' = (Bx)'A + (Bx)A' = AB' + Ax' + A'B' = C B A = T'_A A + T_A A' = (Bx)'A + (Bx)A' = AB' + Ax' + A'B' = C B A = T'_A A + T_A A' = (Bx)'A + (Bx)A' = AB' + Ax' + A'B' = C B A = T'_A A + T_A A' = C B A = C$

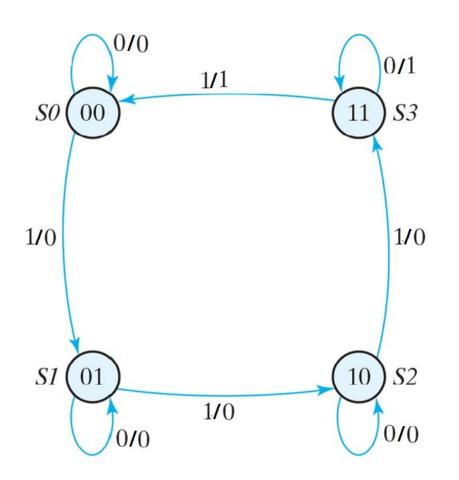
A'Bx and $B(t+1) = x \oplus B$.

State transition table:

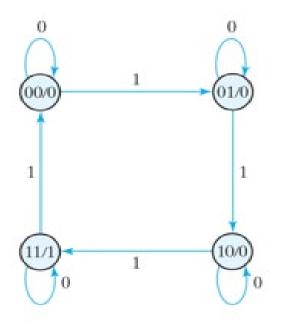
Presen	t state	Input	Next	state	Output
A(t)	B(t)	x(t)	A(t+1)	B(t + 1)	y(t)
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	1

The state Diagram is:

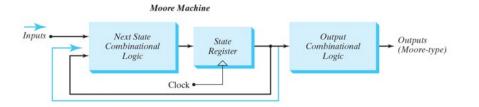
This is an example of Moore Machines



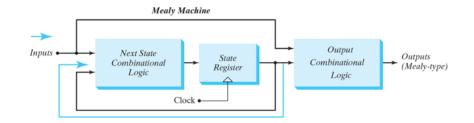
The outputs can be placed inside the bubbles (states):



A Moore Machine or More FSM, looks like this:



The other type of sequential circuits are Mealy Machines:



Design of Sequential Circuits:

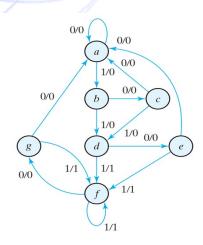
- We saw that analysis starts with a circuit diagram and ends up with a functional description, e.g., in the form of a state diagram,
- Design or synthesis starts with a functional description and the end result should be a circuit diagram

Lecture 10: State Reduction:

- A functional description, may contain redundant states.
- Redundant states act the same: i.e., for a given input go to the same state and generate the same output.
- State reduction is used to combine redundant states.
- Remember that m flip-flops give us up to 2^m states. Reducing the number of states, can, possibly, reduce the number of FFs.
- A circuit with 6 states needs 3 FFs. Reducing the number of states to 4 we only need 2 FFs. But going from 8 to 5, there is no saving.
- In reducing the number of states, usually, the following fact is used:
- Two states are equivalent if, for every input, they generate the same output and transition to the same next state or to an equivalent state.

Lecture 10: State Reduction: Example

Example:



State Transition Table:

Present state	Next	state	Out	put
	x = 0	x = 1	x = 0	<i>x</i> = 1
a	а	b	0	0
b	С	d	0	0
С	а	d	0	0
d	е	f	0	1
е	а	f	0	1
f	g	f	0	1
g	а	f	0	1

• g and e are equivalent. Remove g.

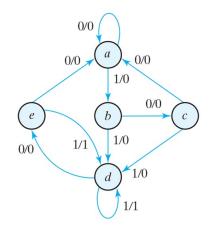
Present state	Next state		Out	put
	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1
a	а	b	0	0
b	С	d	0	0
С	а	d	0	0
d	е	f	0	1
е	а	f	0	1
f	е	f	0	1

State Reduction: Example

The reduced-state Transition Table:

Present state	Next state		Out	tput
	x = 0	<i>x</i> = 1	x = 0	x = 1
a	а	b	0	0
b	С	d	0	0
С	а	d	0	0
d	е	d	0	1
е	а	d	0	1

• The reduced state diagram is:



Lecture 10: State Assignment

- We need to assign binary values to states.
- We use binary values from 0 to 2^{m-1} to states.
- If the number of states s is not a power of 2, we can use the first s numbers counting from 0 to s 1. For example, for the above 5-state circuit, we may use 000, 001, 010, 011, and 100.
- **Gray code** can also be used. In a Gray code any two consecutive numbers differ in only one bits, this may allow some simplification in logic design.
- Third option **one-hot** assignment: use *s* bits to represent each state, only one bit is equal to 1 in each state index, i.e., one flip-flop per state. This makes the design of combinational circuit trivial, but, results in waste of flip-flops and is only wise if there are lots of flip-flops on the chip.

Lecture 10: State Assignment

These three state assignment schemes are shown in this state transition table:

state	binary	Gray code	One-hot
a	0 0 0	0 0 0	0 0 0 0 1
b	0 0 1	0 0 1	0 0 0 1 0
С	0 1 0	0 1 1	0 0 1 0 0
d	0 1 1	0 1 0	0 1 0 0 0
е	100	1 1 0	1 0 0 0 0

• Reduced-state transition table using binary assignment:

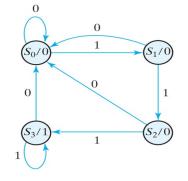
Present state	Next state		Output
	x = 0	x = 1	x = 0 x = 1
0 0 0	0 0 0	0 0 1	0 0
0 0 1	0 1 0	0 1 1	0 0
0 1 0	0 0 0	0 1 1	0 0
0 1 1	1 0 0	0 1 1	0 1
100	0 0 0	0 1 1	0 1

Lecture 10: Design Procedure

- A design process consists of the following tasks:
- 1. Translating the word description of the circuit into a state diagram.
- 2. Reducing the number of states if possible.
- 3. Assigning binary values to the states.
- 4. Obtaining the binary-coded state table.
- 5. Choosing the type of flip-flops to be used.
- 6. Writing down the flip-flop input equations and output equations.
- 7. Drawing the circuit diagram.

Design Procedure: Example

Example: Design a circuit that detects the occurrence of three or more consecutive ones.



• State Transition Table:

Preser	nt state	Input	Next state		Output
A	В	x	A	В	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Lecture 10: Design using D Flip-flop

Assume that we choose D flip-flops.

• Then the flip-flop input equations are:

$$D_A(A, B, x) = A(t+1) = \sum (3,5,7)$$

and,

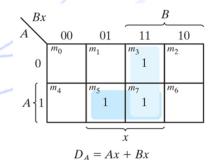
$$D_B(A, B, x) = B(t + 1) = \sum (1, 5, 7)$$

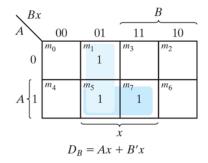
The output equation is

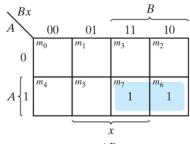
 $y(A, B, x) = \sum (6,7).$

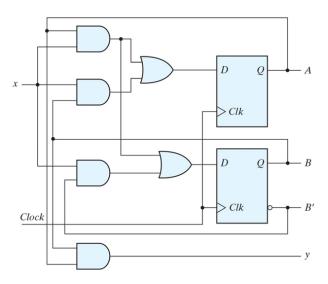
Lecture 10: Design using D Flip-flop

Using the K-maps we find D_A , D_B , and y:









Lecture 10: Excitation Tables

- An **excitation table** is a table that determines the value of the input equations for each state transition. Such a table is called an excitation table.
- For D flip-flops are simple and we don't need an excitation table.
- JK or T flip-flops are more tricky.

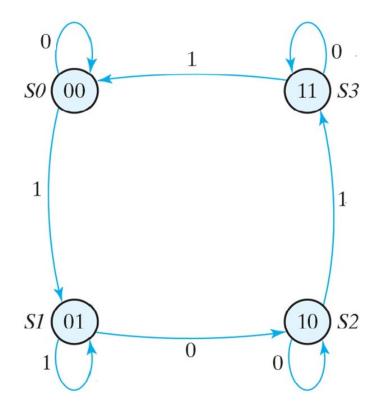
Excitation Table: a) for a JK FF:

Q(t)	Q(t + 1)	J	K
0	0	0	Х
0	1	1	Х
1	0	Х	1
1	1	Х	0

b) For a T FF:

Q(t)	Q(t + 1)	T
0	0	0
0	1	1
1	0	1
1	1	0

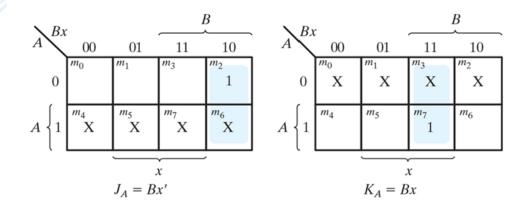
Example: Design a circuit for this state diagram using JK FF:

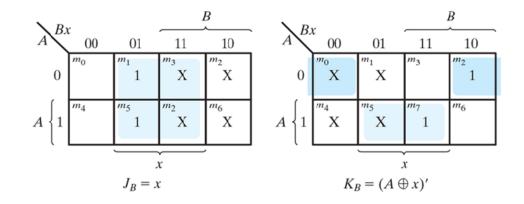


• State Transition Table:

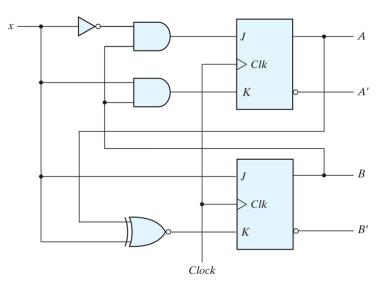
Present state		Input	Next state		FF Inputs			
A	В	x	A	В	J_A	K_A	J_B	K _B
0	0	0	0	0	0	Х	0	Х
0	0	1	0	1	0	Х	1	Х
0	1	0	1	0	1	Х	Х	1
0	1	1	0	1	0	Х	Х	0
1	0	0	1	0	Х	0	0	Х
1	0	1	1	1	Х	0	1	Х
1	1	0	1	1	Х	0	Х	0
1	1	1	0	0	Х	1	Х	1

Example: Design a circuit using JK flip-flop for:

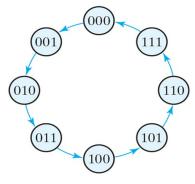




The Logic Diagram is:



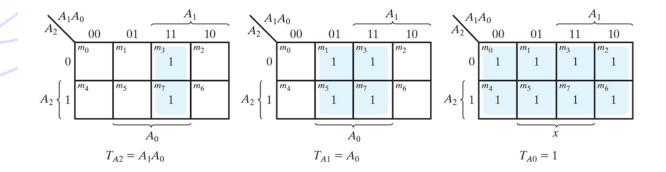
State Diagram of a 3-bit Counter:



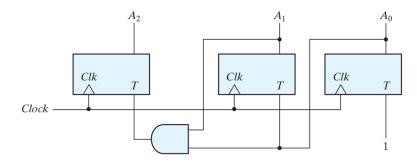
• State Transition Table:

Present state		Next state			F	FF inputs		
A2	A_1	A_0	A2	A_1	A_0	T_{A_2}	T_{A_1}	T_{A_0}
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

FF input equations:



• The Logic Diagram:



Lecture 10: Knowledge Check

- **Question 1:** A counter counts from 0 to 17. How many FFs do we need to implement it?
- a) 18, b) 5, c) 3, d) 4
- **Question 2:** A counter with 6 FFs can count up to:
- a) 16, b) 32, c) 63, d) 31