

COEN 212: DIGITAL SYSTEMS DESIGN I Lecture 11: Registers and Counters

Instructor: Dr. Reza Soleymani, Office: EV-5.125, Telephone: 848-2424 ext.: 4103.

Lecture 11: Objectives of this lecture

- In this lecture, we talk about:
	- Different types of Registers.
	- Implementation of registers and
	- Different Types of Counters.
	- Implementation of Counters.
	- Sample Applications.

Lecture 11: Reading for this lecture

• Digital Design by M. Morris R. Mano and Michael D. Ciletti, 6th Edition, Pearson, 2018: – Chapter 6

Lecture 11: Registers:

• **4-bit register: 4-bit register with Load control**

Lecture 11: **Registers:**

• MUX for Load Control:

• Implementation of the MUX:

Lecture 11: **Registers:**

4-bit register with Load:

Lecture 11: **Shift Registers:**

4-bit Shift Register:

• Serial Transfer:

Register to Register Serial Transfer:

Serial Transfer:

• Content of registers:

Lecture 11: **Serial Addition:**

Serial Adder:

Serial Addition: JK FF IMplementation

• State Transition Table:

• FF input equations:

$$
J_Q = xy
$$

$$
K_Q = x'y' = (x + y)'
$$

The output equation:

 $S = x \oplus y \oplus Q$

Serial Addition: JK FF Implementation

Serial adder circuit diagram:

Universal Shift Register

- A Universal SR can:
	- Remain unchanged,
	- Load serially and shift right,
	- Load serially and shift left,
	- Load in parallel.
- We need 4 control signals (2 control bits):

Lecture 11: **Universal Shift Register**

The circuit for Universal shift Register:

Parallel inputs

Lecture 11: **Counters:**

- A counter is a register that changes in a certain order.
- Examples:
	- $-$ A binary counter counts from 0 to $2ⁿ$ -1.
	- A BCD counter counts from 0 to 9 (0000 to 1001).
- There are two types of counters:
	- Ripple counters
	- Synchronous counters
- In a synchronous counter, state changes are dictated by a common clock.
- In a ripple counter, the output of one flip-flop has effect on the next state of the following flip-flop.

Binary Ripple Counter: with T FF

A 4-bit ripple counter:

Binary Ripple Counter: with D FF

A 4-bit ripple counter with D FFs:

Lecture 11: **BCD Ripple Counter:**

State Diagram of a BCD Ripple Counter:

Circuit Diagram:

Synchronous Counters:

State Diagram of a Synchronous Binary Counter:

Up-Down counters:

A 4-bit up/down counter:

Synchronous BCD counter:

State transition table of a 4-bit up/down counter:

Lecture 11: **Synchronous** BCD counter:

UNIVERS Concordia *Department of Electrical & Computer Engineering*

FF Input Equations:

K-map for T_2 :

$$
T_1 = 1,
$$

\n
$$
T_2 = Q'_8 Q_1,
$$

\n
$$
T_4 = Q_2 Q_1
$$

\n
$$
T_8 = Q_8 Q_1 + Q_4 Q_2 Q_1
$$

\nand the output equation: $y = Q_8 Q_1.$

UNIVERSITÉ Concordia *Department of Electrical & Computer Engineering*

Synchronous BCD counter:

The circuit for a BCD Counter with T Flip-flops:

Counters with Parallel Load:

Counters with Unused States:

- Binary Counter with n flip-flops can have 2^n states.
- We may not need all these states.
- We have already seen the example of BCD counter that uses only 10 out of $2^4 = 16$ possible states.
- We can treat the unused states:
	- as don't care condition or
	- some specific next states. Since,
- **Example:** consider a counter following the sequence 000, 001, 010, 100, 101, 110. That is, the counter skips 011 and 111.

Counters with Unused States:

- **Example:** consider a counter following the sequence 000, 001, 010, 100, 101, 110. That is, the counter skips 011 and 111.
- The state table for this counter is:

• We have $J_A = K_A = B$, $J_B = C$, $K_B = 1$, $J_C = B'$, and $K_C = 1$.

Counters with Unused States:

The circuit diagram is:

State Diagram:

Lecture 11: Ring Counter:

- A Ring Counter counts: 1000, 0100, 0010, 0001, 1000, …
- At any time only one FF is on.
- It can be used to control a sequence of repetitive operations.
- A Ring Counter can be implemented by connecting the output of a shift register to its input.

Two FF implementation:

 $T₃$

Lecture 11: Johnson Counter:

- Schematic of
- switch-tail Ring Counter:

- A Johnson counter is a switch tail ring with outputs (or inverted outputs) of flip-flops combined (by AND) to form 2k timing signals.
- The rule for forming AND gate inputs is straightforward:
	- For all zero pattern the inverted outputs of the first and last flipflop are used.
	- For all one pattern the regular outputs of the extreme flip-flops are used.
	- For other patterns, the first two alternating bits, either 01 or 10 are used.

Lecture 11: Johnson Counter:

The count sequence for the 4-bit tail-switch ring counter:

- So, in this example: we use A' E' for 0000 , AE for 1111, AB' for 1000, BC' for 1100. Similarly $A'B$ for 0111 and $B'C$ for 0011 and so on.
- When Johnson counter goes to an unused state, it goes from one invalid state to another. To avoid this, we may disconnect the output of B flip-flop from the input D of C flip-flop and instead feed C flip-flop with $D_c = (A + C)B$.

Lecture 11: Knowledge Check

Question 1: Minimum number of Flip-flops needed to implement a counter that counts up to 25 is: • a) 25, b) 5, c) 6, d) 8

• **Question 2:** How many FF's do we need if we use ring counter: • a) 5, b) 8, c) 25, d) 12

- **Question 3:** Compared to parallel adder, a Serial adder:
- a) is faster, b) is slower, c) needs more gates, d) both a and c