

COEN 212: DIGITAL SYSTEMS DESIGN Lecture 2: Boolean Algebra

Instructor: Dr. Reza Soleymani, Office: EV-5.125, Telephone: 848-2424 ext.: 4103.

Lecture 2: Objectives of this lecture

- Definition of Boolean Algebra
- Properties of Boolean Algebra
- Boolean representation of Digital Circuits

Lecture 2: Reading for this lecture

• Chapter 2 (sections 2.1 to 2.5)

of Digital Design by M. Morris R. Mano and Michael D. Ciletti, 6th Edition, Pearson, 2018.

Axiom's of Boolean Algebra

- Boolean Algebra is an algebraic structure defined by a set of elements B and two operations + and . with the following properties:
- 1) The structure is closed under + and ., i.e., if $x \in B$ and $y \in B$ then $x + y \in B$ and $x \cdot y \in B$.
- 2) Identity element for +, x + 0 = 0 + x = x for all $x \in B$.
- Identity element for ., say 1, $x \cdot 1 = 1$. x = x for all $x \in B$.
- 3) Commutativity for both + and ., i.e.,

x + y = y + x and $x \cdot y = y \cdot x$.

4) Distributivity: $x \cdot (y + z) = x \cdot y + x \cdot z$ and $x + y \cdot z = (x + y) \cdot (x + z)$

- 5) For every element $x \in B$ there is an element $x' \in B$ such that:
- a) x + x' = 1 and b) $x \cdot x' = 0$
- 6) B has at least two distinct elements $x, y \in B, x \neq y$.

Two-valued Boolean Algebra:

- Let' $B = \{0,1\}$
- Define operations:

x	у	<i>x.y</i>
0	0	0
0	1	0
1	0	0
1	1	1

• and

• In the next two slides, we verify the validity of the Boolean algebra for our proposed structure.

Two-valued Boolean Algebra:

- Axiom 1: Since 0+1=1+0=1+1=1 and 0+0=0, B is closed under +
 Since 0.0=1.0=0.1=10 and 1.1+0=1, B is closed under .
 - Axiom 2: a) 0+0=0 and 0+1=1+0=1 and b) 1.1=1 and 1.0=0.1=0.

So, 0 is the identity for + and 1 is the identity for .

- Axiom 3: 0.1=1.0=0, 1.1=1, 0.0=0 and 0+1=1+0=1,1+1=1, 0+0=0
- Axiom 4 a:

x	у	Ζ	y + z	x.(y+z)	<i>x.y</i>	<i>X.Z</i>	x.y + x.z
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

So: x. (y + z) = x. y + x. z

Two-valued Boolean Algebra:

	<u> </u>		$\sim /$					
AXIOM 4 D.	x	y	Ζ	<i>y.z</i>	x + y.z	x + y	x + z	(x + y).(x + z)
	0	0	0	0	0	0	0	0
	0	0	1	0	0	0	1	0
	0	1	0	0	0	1	0	0
	0	1	1	1	1	1	1	1
	1	0	0	0	1	1	1	1
	1	0	1	0	1	1	1	1
	1	1	0	0	1	1	1	1
/	1	1	1	1	1	1	1	1

So: $x + y \cdot z = (x + y) \cdot (x + z)$

• Axiom 5: if x = 0, then x + 1 = 1 and $x \cdot 1 = 0$

Similarly if x = 1, then x + 0 = 1 and $x \cdot 0 = 0$.

• So 1 is complement of 0 and 0 is complement of 1.

• Axiom 6: by definition B has two distinct elements.

Lecture 2: Properties of Boolean Algebra: Theorem 1

Theorem 1: a) x + x = x and b) $x \cdot x = x$ To prove a: x + x = (x + x).1Axiom 2 =(x + x).(x + x')Axiom 5 $= x + x \cdot x'$ Axiom 4 Axiom 2 = x + 0= xTo prove b: Axiom 2 $x \cdot x = x \cdot x + 0$ Axiom 5 $=x_{x} + x_{x}'$ Axiom 4 = x.(x + x')Axiom 2 = x.1= x

Lecture 2: Properties of Boolean Algebra: Theorem 2

heorem 2: a)
$$x + 1 = 1$$
 and b) $x \cdot 0 = 0$
o prove a:
 $x + 1 = 1 \cdot (x + 1) = (x + x') \cdot (x + 1) = x + x' \cdot 1$
 $= x + x' = 1$
o prove b:
 $x \cdot 0 = 0 + x \cdot 0 = x \cdot x' + x \cdot 0 = x \cdot (x' + 0)$

 $= x \cdot x' = 0$

Proof of b using De Morgan Duality:

Start with x' + 1 = 1 and change any entity to its inverse (complement) and every + to . and vice versa to get $x \cdot 0 = 0$.

Lecture 2: Properties of Boolean Algebra: Theorems 3 and 4

Theorem 3: (x')' = x

Simply put: Inverting twice is like doing nothing. **Proof:**

Axiom 5 states that: x + x' = 1 and $x \cdot x' = 0$.

Using Commutativity (Axiom 3)

x' + x = 1 and $x' \cdot x = 0$.

So : x is the inverse of x'.

Theorem 4: a)x + xy = x, b) $x \cdot (x + y) = x$

Proof: a) x + xy = x(1 + y) = x. 1 = x. b)x. (x + y) = x. x + x. y = x + x. y = x.

Lecture 2: Boolean Functions

- A Boolean function is an expression containing binary variables, constants and logical operations.
 - Example: $F_1 = x + y'z$
 - Implementation of F_1 :

• Truth table of F_1 :

x	y	Ζ	F_1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Lecture 2: Boolean Functions

Another Example: F₂ = x'y'z + x'yz + xy'
Direct implementation of F₂:

• Truth table for F_2 :

x	y	Z	F_2
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Lecture 2: Boolean Function minimization

• We can write F_2 as

 $F_2 = x'y'z + x'yz + xy' = x'z(y' + y) + xy' = x'z + xy'$

This leads to another implementation with less gates:

Comparison of the complexity of two implementation:

	AND	OR	NOT
Direct	5	2	2
Implementation			
Minimized	2	1	2
Complexity			

- Having less gates means, lower cost, lower delay, lower power consumption, more reliability.
- Soon, we will learn techniques for minimizing the gate count.

Complement of Boolean functions

- Complement of a function F denoted as F' is a function that produces a 1 when F produces a 0 and produces a zero when F's output is one.
- We use De Morgan's theorem to show that

$$(A + B + C + \dots + F)' = A'B'C' \dots F'$$

and

$$(ABC ... F)' = A' + B' + C' + \dots + F'.$$

- Using these generalized De Morgan formulas, we can find the complement of any Boolean function.
- **Example:** find the complement of F = xy' + x'y.

$$F' = (x' + y)(x + y') = x'x + x'y' + xy + yy'$$
 or

since x'x = yy' = 0, we get:

$$F' = xy + x'y'.$$

Lecture 2: Complement of Boolean functions

• **Example 2:** find the complement of F = x(y'z' + yz).

F' = [x(y'z' + yz)]' = x' + (y'z' + yz)' = x' + (y + z)(y' + z')= x' + yy' + yz' + zy' + zz' = x' + yz' + zy'.

Example 3: find the complement of F = (x' + y + z')(x + y')(x + z).

$$F' = [(x' + y + z')(x + y')(x + z)]'$$

= $(x' + y + z')' + (x + y')' + (x + z)'$
= $xy'z + x'y + x'z'$

Lecture 2: Knowledge Check

• **Question 1:** Implement the function for the following truth table:

X	У	Z
0	0	1
0	1	1
1	0	1
1	1	0

• **Question 2:** Complement of F = x'y + y'x is: a) F' = (x'+y')(x+y) b) F' = xy + x'y' c) F' = x'y + xy b) None

Question 3: Derive the truth table of:

$$F = x'y'z + xy'z' + x'yz' + xyz$$