

COEN 212: DIGITAL SYSTEMS DESIGN I Lecture 3: Logic Gates

Instructor: Dr. Reza Soleymani, Office: EV-5.125, Telephone: 848‐2424 ext.: 4103.

Lecture 3: Objectives of this lecture

- · Basic forms of Boolean expressions: Canonical and standard forms.
- Logic Gates.
- Multiple input gates.

Lecture 3: Reading for this lecture

- Digital Design by M. Morris R. Mano and Michael D. Ciletti, 6th Edition, Pearson, 2018:
	- $-$ Chapter 2 (2.6 to 2.9)

Lecture 3: Literals

- • In a Boolean expression, each term is represented by a gate and each variable in a term is an input to that gate.
- \bullet Each variable appearing in a function, whether in complimented or original form is called a literal.
- •For example, $F = x'y'z + xyz' + x'z'$ has three terms and 8 literals.

Department of Electrical & Computer Engineering Standard Forms: Sum of Products

- • **Standard forms:**
	- Sum of products
	- Product of sums.

• **Standard sum of product form:**

- $\mathcal{L}_{\mathcal{A}}$ function is represented as the sum (OR) of several terms.
- Each term is the product (AND) of one or more literals.
- example,

$$
F_1 = x + x'y + xyz + x'y'z'
$$

is in Sum of Products form.

Department of Electrical & Computer Engineering Standard Forms: Product of Sum form

- •**Standard Product of Sum form:**
- • a function is represented as product (AND) of several factors.
- Each factor is the sum (OR) several terms.
- Example

$$
F_2 = x(x' + y')(x + z')(x + y + z)
$$

is in Product of Sums form.

Canonic Forms: minterms *Department of Electrical & Computer Engineering*

- •With two variables x and y , we can form 4 products or xy , $x'y$, xy' , $x'y'$ each called a standard product or a minterm.
- •With *n* variables, there are 2^n minterms enumerated using numbers 0 to 2 $n-1$ (in binary)
- • minterms corresponding to each row of the truth table is formed by ANDing the variables (for 1's) or their complements (for 0's).
- •Example: $n = 3$

•

•

Canonic Forms: Maxterms *Department of Electrical & Computer Engineering*

- \bullet A standard sum or Maxterm is formed by ORing the n variables. Those with 0 value appear uncomplemented and those with value 1 appear complemented.
	- Example:

 \bullet Note that each Maxterm is the complement of the corresponding minterm.

Canonic Sum of Product Forms

A Boolean function can be expressed algebraically by adding the minterms for those rows of the truth table for which the function is 1.

Example:

 $F_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$ or $F_1(x, y, z) = \sum (1, 4, 7)$. and,

 $F_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$ or $F_2(x, y, z) = \sum$ (3,5,6,7).

Canonic Product of Sum Forms

- AND the Maxterms corresponding to those rows of the truth table for which the function is equal to 0.
- $F_1 = (x + y + x)$, $(x + y' + z)$, $(x + y' + z')$, $(x' + y + z')$, $(x' + y' + z')$ $Z = M_0, M_2, M_3, M_5, M_6.$
- We can also add together the minterms corresponding rows where F_1 is zero and then take the compleme, i.e.,
	- $F_1' = x'y'z' + x'yz' + x'yz + xy'z + xyz'$
	- $F_1 = (x'y'z' + x'yz' + x'yz + xy'z + xyz')' = (x + y + z)(x + z)$ $y' + z(x + y' + z')(x' + y + z')(x' + y' + z) = M_0M_2M_3M_5M_6$
- This can be written as $F_1(x, y, x) = \prod(0,2,3,5,6)$.
- Similarly, $F_2 = (x + y + z)(x + y + z')(x + y' + z)(x' + y + z)$ $Z = M_0, M_1, M_2, M_4 = \Pi(0.1.2.4)$

Transforming Canonical forms

- • A function represented in sum of minterms can be converted to a product of Maxterms form and vice versa.
- \bullet Note that:
	- a sum of minterms expression has those minterms for which the function is 1.
	- The complement of the function consists of the rest of the terms.
	- The complement of the complement will have Maxterms for these rows (the rest of the terms).
	- The complement of the complement of the function is the function itself.
- \bullet For example, in the previous example,
	- $F_1 = \sum (1, 4, 7).$
	- F_1' is the sum of the rest of minterms, i.e., $F_1' = \sum(0,2,3,5,6)$.
	- So, $F_1 = (F_1)' = \prod(0, 2, 3, 5, 6)$.

•

Other Logic Operations

- • \bullet m variables take 2^n values, i.e., the truth table for an n-bit function has 2^n rows.
- •Each row's value can be a 1 or a 0. So, there are 2^{2^n} functions with n binary inputs.
	- For $n = 2$, we have four values for x and y. So, there are $2^4 =$ 16 functions.

- \bullet Each column defines a different gate (or function).
- \bullet For example: Column 4 (F_1) is AND and 10 (F_7) is OR.

Lecture 3: **Other Logic Operations**

Lecture 3: Other Logic Operations

- • \bullet We have learned about $F_1(\text{AND})$ and $F_7(\text{OR})$ already. F_{10} and F_{12} are also NOT for variables y and x, respectively.
- • Some other functions that are important are:
	- $-F_8$: $(x + y)'$ called NOR: NOT-OR

 $F_{14}\colon (x,y)'$ called NAND: NOT-AND

 F_6 : $xy' + x'y$ called Exclusive OR: XOR

Lecture 3: Multiple Input Gates: OR

AND gates and OR gates are commutative and associative, i.e., $(x + y) + z = x + (y + z)$. So, a 3-input OR gate can be made from two OR gates with two inputs each.

Multiple Input Gates: AND

- • Similarly a 3-input AND gate can be written with no ambiguity as (x, y) . z or x . (y, z) .
- \bullet So, it can be implemented using two 2-input AND gates:

and

So,

Multiple Input Gates: NOR and NAND

• NAND and NOR operations are not associative, e.g., for NOR gates

$$
(x \downarrow y) \downarrow z = [(x + y)' + z]' = (x + y)z' = xz' + yz'
$$

$$
x \downarrow (y \downarrow z) = [x + (y + z)']' = x'(y + z) = x'y + x'z
$$

 $(x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$

 \bullet To avoid this difficulty NAND and NOR gates are implemented using complemented (inverted) AND and OR gates, i.e.,

> $x \uparrow y \uparrow z = (xyz)'$ $x \downarrow y \downarrow z = (x + y + z)'$

UNIVERSITÉ Concordia *Department of Electrical & Computer Engineering*

Multiple Input Gates: NOR and NAND

•3-input NAND gate:

 \bullet 3-input NOR gate:

Lecture 3: Multiple Input Gates: XOR

 XOR and X-NOR (equivalence) are both commutative and associative. So, they can be extended to more than two inputs.

- • 3-input XOR gate:
	- Symbol

•

– Implementation

Lecture 3: Knowledge Check

•

 Question 1: Implement the function for the following truth table:

•**Question 2:** Complement of $F = x'y + y'x$ is: a) $F' = (x'+y')(x+y)$ b) $F' = xy + x'y'$ c) $F' = x'y + xy$ b) None

Question 3: Derive the truth table of:

$$
F = x'y'z + xy'z' + x'yz' + xyz
$$