

COEN 212: DIGITAL SYSTEMS DESIGN I Lecture 3: Logic Gates

Instructor: Dr. Reza Soleymani, Office: EV-5.125, Telephone: 848-2424 ext.: 4103.

Lecture 3: Objectives of this lecture

- Basic forms of Boolean expressions: Canonical and standard forms.
- Logic Gates.
- Multiple input gates.

Lecture 3: Reading for this lecture

- Digital Design by M. Morris R. Mano and Michael D. Ciletti, 6th Edition, Pearson, 2018:
 - Chapter 2 (2.6 to 2.9)

Lecture 3: Literals

- In a Boolean expression, each term is represented by a gate and each variable in a term is an input to that gate.
- Each variable appearing in a function, whether in complimented or original form is called a literal.
- For example, F = x'y'z + xyz' + x'z' has three terms and 8 literals.

Standard Forms: Sum of Products

Standard forms:

- Sum of products
- Product of sums.

Standard sum of product form:

- function is represented as the sum (OR) of several terms.
- Each term is the product (AND) of one or more literals.
- example,

$$F_1 = x + x'y + xyz + x'y'z'$$

is in Sum of Products form.

Standard Forms: Product of Sum form

- Standard Product of Sum form:
- a function is represented as product (AND) of several factors.
- Each factor is the sum (OR) several terms.
- Example

$$F_2 = x(x' + y')(x + z')(x + y + z)$$

is in Product of Sums form.

Canonic Forms: minterms

- With two variables x and y, we can form 4 products or xy, x'y, xy', x'y' each called a standard product or a minterm.
- With *n* variables, there are 2^n minterms enumerated using numbers 0 to $2^n 1$ (in binary)
- minterms corresponding to each row of the truth table is formed by ANDing the variables (for 1's) or their complements (for 0's).
- Example: n = 3

x	у	Ζ	Term	Designati
				on
0	0	0	x'y'z'	m_0
0	0	1	x'y'z	m_1
0	1	0	x'yz'	m_2
0	1	1	x'yz	m_3
1	0	0	xy'z'	m_4
1	0	1	xy'z	m_5
1	1	0	xyz'	m_6
1	1	1	xyz	m_7

Canonic Forms: Maxterms

- A standard sum or Maxterm is formed by ORing the *n* variables. Those with 0 value appear uncomplemented and those with value 1 appear complemented.
- Example:

x	у	Ζ	Maxterm	Designatio
				n
0	0	0	x + y + z	M ₀
0	0	1	x + y + z'	M_1
0	1	0	x + y' + z	M_2
0	1	1	x + y' + z'	<i>M</i> ₃
1	0	0	x' + y + z	M_4
1	0	1	x' + y + z'	M_5
1	1	0	x' + y' + z	M_6
1	1	1	x' + y' + z'	M_7

• Note that each Maxterm is the complement of the corresponding minterm.

Canonic Sum of Product Forms

A Boolean function can be expressed algebraically by adding the minterms for those rows of the truth table for which the function is 1.

Example:

x	y	Ζ	F_1	F_2
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 $F_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$ or $F_1(x, y, z) = \sum (1, 4, 7)$. and,

 $F_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$ or $F_2(x, y, z) = \sum (3,5,6,7).$

Canonic Product of Sum Forms

- AND the Maxterms corresponding to those rows of the truth table for which the function is equal to 0.
- $F_1 = (x + y + x).(x + y' + z).(x + y' + z').(x' + y + z').(x' + y' + z').(x' +$
- We can also add together the minterms corresponding rows where F_1 is zero and then take the compleme, i.e.,
 - $F_{1}' = x'y'z' + x'yz' + x'yz + xy'z + xyz',$
 - $-F_1 = (x'y'z' + x'yz' + x'yz + xy'z + xyz')' = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z) = M_0M_2M_3M_5M_6$
- This can be written as $F_1(x, y, x) = \prod(0, 2, 3, 5, 6)$.
- Similarly, $F_2 = (x + y + z)(x + y + z')(x + y' + z)(x' + y + z) = M_0$. M_1 . M_2 . $M_4 = \prod (0, 1, 2, 4)$

Transforming Canonical forms

- A function represented in sum of minterms can be converted to a product of Maxterms form and vice versa.
- Note that:
 - a sum of minterms expression has those minterms for which the function is 1.
 - The complement of the function consists of the rest of the terms.
 - The complement of the complement will have Maxterms for these rows (the rest of the terms).
 - The complement of the complement of the function is the function itself.
- For example, in the previous example,
 - $F_1 = \sum (1,4,7).$
 - F_1' is the sum of the rest of minterms, i.e., $F_1' = \sum (0,2,3,5,6)$.
 - So, $F_1 = (F_1')' = \prod (0,2,3,5,6).$

Other Logic Operations

- n variables take 2^n values, i.e., the truth table for an n-bit function has 2^n rows.
- Each row's value can be a 1 or a 0. So, there are 2^{2^n} functions with *n* binary inputs.
 - For n = 2, we have four values for x and y. So, there are $2^4 = 16$ functions.

x	y	F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9	<i>F</i> ₁₀	<i>F</i> ₁₁	<i>F</i> ₁₂	<i>F</i> ₁₃	<i>F</i> ₁₄	<i>F</i> ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

- Each column defines a different gate (or function).
- For example: Column 4 (F_1) is AND and 10 (F_7) is OR.

Lecture 3: Other Logic Operations

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	<i>x/y</i>	Inhibition	<i>x</i> , but not <i>y</i>
$F_3 = x$		Transfer	x
$F_4 = x'y$	y/x	Inhibition	<i>y</i> , but not <i>x</i>
$F_5 = y$		Transfer	у
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y , but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	<i>y'</i>	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y, then x
$F_{12} = x'$	<i>x'</i>	Complement	Not <i>x</i>
$F_{13} = x' + y$	$x \supset y$	Implication	If <i>x</i> , then <i>y</i>
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

Lecture 3: Other Logic Operations

- We have learned about F_1 (AND) and F_7 (OR) already. F_{10} and F_{12} are also NOT for variables y and x, respectively.
- Some other functions that are important are:
 - F_8 : (x + y)' called NOR: NOT-OR

- F_{14} : (x.y)' called NAND: NOT-AND

- $F_6: xy' + x'y$ called Exclusive UK: XUK

Lecture 3: Multiple Input Gates: OR

AND gates and OR gates are commutative and associative, i.e., (x + y) + z = x + (y + z). So, a 3-input OR gate can be made from two OR gates with two inputs each.

Multiple Input Gates: AND

- Similarly a 3-input AND gate can be written with no ambiguity as (x, y). z or x. (y. z).
- So, it can be implemented using two 2-input AND gates:

Multiple Input Gates: NOR and NAND

NAND and NOR operations are not associative, e.g., for NOR gates

$$(x \downarrow y) \downarrow z = [(x + y)' + z]' = (x + y)z' = xz' + yz'$$

and

$$x \downarrow (y \downarrow z) = [x + (y + z)']' = x'(y + z) = x'y + x'z$$

So,

 $(x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$

• To avoid this difficulty NAND and NOR gates are implemented using complemented (inverted) AND and OR gates, i.e.,

 $x \uparrow y \uparrow z = (xyz)'$ $x \downarrow y \downarrow z = (x + y + z)'$

Department of Electrical & Computer Engineering

Multiple Input Gates: NOR and NAND

• 3-input NAND gate:

• 3-input NOR gate:

Lecture 3: Multiple Input Gates: XOR

XOR and X-NOR (equivalence) are both commutative and associative. So, they can be extended to more than two inputs.

• 3-input XOR gate:

- Symbol

- Implementation

Lecture 3: Knowledge Check

Question 1: Implement the function for the following truth table:

X	У	Z
0	0	1
0	1	1
1	0	1
1	1	0

• Question 2: Complement of F = x'y + y'x is: a) F' = (x'+y')(x+y) b) F' = xy + x'y' c) F' = x'y + xy b) None

Question 3: Derive the truth table of:

$$F = x'y'z + xy'z' + x'yz' + xyz$$