€Concordia

Department of Electrical & Computer Engineering

COEN 212:
DIGITAL SYSTEMS DESIGN
Lecture 4: Gate-Level Minimization

Instructor: Dr. Reza Soleymani, Office: EV-5.125,
Telephone: 848-2424 ext.: 4103.
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Objectives of this lecture

e K-Maps.

e Logic simplification using K-Maps.

e Incompletely specified circuits (“Don’t care
condition).

e NAND-only implementation.
e NOR-only implementation.
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Reading for this lecture

e Digital Design by M. Morris R. Mano and
Michael D. Ciletti, 6th Edition, Pearson, 2018:

— Chapter 3 (3.1 to 3.6)
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* A K-map for an n variables circuit has 2™ squares.
Each square represents a row of the truth table (a minterm).
For two variables x and y , we have:

x{l

Example: the AND Gate:

y

1

mn

xryr

ﬁll

x'y

)

xy’
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Xy
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Two-value K-Maps

e Example: the OR Gate

The functionism; + my, + my =x'y+xy' +xy =x +y.
Using Boolean Algebra:
x'y+xy' +xy=x'y+xy+xy +xy
=@ +0)y+x@+y)=x+y
Using K-map: Group together

- myand m,

- m, and m;
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Example: for a function with fruth table

x
0
1
1
0
The k-map is: ,
X 4 0] 1
!110 m1
0 1

—

n12 n'l3
X411

And the Boolean expressionism; + m, = x'y + xy’'.

Slide 6



Lecture 4-:
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e For three variables x.v.z, we neeo}l} 23 = 8 squares.

. Z , . .
* The k-map is: S DT
my ny my )
0 xfyfzf xfyfz x.’yz xn'yzf
n14 ‘mS m;' l?16
X1 xy'z' | xy'z xyz xyz'
z

e Example: simplify the function F(x,y, z) = >.(2,3,4,5).

x'y

10 ////

yz )i
X 00 01 11
}71‘0 ml ”13 HTZ
0 1 1
m4 ms m-, ’"6
x4 1 1 1
/ -
xy, L

F(x,y,z) =xy"+x'y
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Three-value K-Maps

e Example: F(x,y,z) = }.(3,4,6,7).
e The k-map is:

y
yz A
x 00 01 11 10
I’ITO ml 7)13 /!)12// yZ
0 1
m4 ﬂlS i717 m6
x4 1 1 1 1
e
Z ,
X'z xy2

F(x,y,z) =yz+ xz'
e Example: (x,y,z) = ).(0,2,4,5,6).
* K-map: S

—
vz X 00 01 11 10
\ my, ny iy ny |~ yz
my 5 7 6
x41 1 1 1
/

The function:F(x,y,z) = z’' + xy'. xy
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Lecture 4:

Four-value K-Maps

e It has 16 squares e

wx 00

01

00 [w'x'y'z’

W'X'y'z

11
M3

w'x'yz

01 [w'xy'z’

w'xy’z

w'xyz

11| wxy'z’

wxy'z

nys

wxyz

10| wx'y'z’

eryrz

g

wx'yz

* |n a 4-variable map:
One square represents one minterm with 4 literals.

Two adjacent squares represent a term with three literals.
Four adjacent squares represent a term with 2 variables.
Eight adjacent squares represent a term with one literal.

EConcordia
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Four-value K-Maps

o Example: simplify the function: F(w, x,y,z) =
2.(0,1,2,4,5,6,8,9,12,13,14).

y
yz —_—
wE 00 01 11 10
w 'y'z’ nig ny My my
oot 1 1

wfyzf

xyz'

e
2
s
= o
—_ —
\ E
— —
S I
= =
(=3 (=5 - fary
|

e The expression is:

Fiw,x,y,z) =y +w'z' + xz
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K-Maps: Prime Implicants

* A prime implicant is a product term formed by combining the
maximum possible number of squares in a K-map. Number of
squares are a power of two: 1, 2, 4, 8, ...

* Assingle square that cannot be combined with any other
square forms a prime implicant.

* Any two adjacent squares that cannot be part of a group of 4
adjacent cells form a prime implicant.

4 adjacent squares that cannot be part of a group of 8
adjacent cells form a prime implicant.

A prime implicant that has a square that is not part of any
other prime implicant is called an essential prime implicant.
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K-Maps: General Procedure

e Draw the Truth Table if one is not provided.

 Draw the K-map for the circuit using the
Truth Table.

e Find all essential prime implicants and
specify the associated terms.

e Form the simplified expression by logical sum
(OR) of:
— those tferms and,
— the minterms remaining.
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K-Maps: General Procedure

e Example:
e F(A,B,C,D) =),(0,2,3,5,7,8910,11,13,15).

C
cD
AB 00 01 11 10

gy ny my
00 1 1 1 \

CD ‘_\'\\‘ "y ’“5 "o me
AD ﬂh\\]\ 1
B'C
)ﬂ]__ HI13 ""15 HFH
AT F
A

Mg Mg myy iy /
1 1 1 1

F=BD+B'D'"+CD + AB’
Other possibilities:
F=BD+B'D'+B'C+AD, BD+B'D'+B'C+ AB’,
F=BD+B'D'+CD + AD.
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F(A,B,C,D) = 2(0,1,2,5,8,9,10)

C
CD. - A ~
Ag\_m\ 0o 11 M
-’?0 ﬂf] 913 i )
, ]) N " &
N7
m4 m m-; )'Hé /]
m]g ﬁf]3 »‘?115 HII4
1| o 0 0o | o
A -y
ﬁf& HIQ m“ ”110
- 1\ 1 0 (
- L , |
= \

F=B'D'"4+B'C'"+A'C'D
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K-Maps: Product of Sums

F(A,B,C,D) = 2(0,1,2,5,8,9,10)

C

cD —_—
AB 00 01 11 10
cD
iJIO H!] }133 Hi‘z /
00| 1 1 011 | y BCD'
BC'D’
\ My m
0IT=0 1 0 0
mlz “13 B
1| o 0 0o o
A 1
9 m
0] 1 1 0 1 T AB
D

So: F' = AB + CD + BD'

And using De Morgan’s we get:
F=A+B)(C"+D")B'+D)
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Lecture 4:
Implementation: Sum of Products

F=B'D'"4+B'C'"+AC'D

i
%

* AND-OR implementation
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Implementation: Product of Sums

F=(A"+B)(C' +D)B +D)

L B —

e OR-AND implementation
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Don’t’ care condition

* When we don’'t care about the value of the logic
for a certain combination of variables, we put a X
instead of a0 or a 1 in the square.

e A Don't care square may be considered asa 1 or @
0 square and combined with other squares of similar
content when doing simplification.

 The choice is made such that the number of gates
IS Minimized.
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Don't’ care condition: 7-segment example

o |Input: Digits 0 to 9 (in binary).
 The output: Digits on the LED Display.

a

b =D
w — 00
C
% &9
Input d e a
"“ —_— encoder e ﬂ @
z f
g Seven
- segment
DP display

* Input has 4 bits. So, 16 possibilities.
e But we only need 10 of 16 and don't care for the
rest.
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Don't’ care condition: 7-segment example

e Truth Table for the 7-segment encoder.

wx y z

0 0 0O

A ER

XXX XXX —— O = — = — = O —
XXX XXX —— =00 = — — — —
XXX XXX — — — = — = O — —
XXX XXX ——0 = —0 ——0O —
XX XXXXO—-0—-000 — O —
XXX XXX ——0O0 = —= =000 —
XXX XXX ——0O——=—= =000
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Don't’ care condition: 7-segment example

* K-map for pin e of the LED:

e e=x'z'"+yz.

y
S A
wx 01 11 )f‘
Ly iy iy iy
00 1 0 0
- /
iy Mg g ey -
01 0 0 0 1
e Y
L nysz mnys LK
11 X X X X
L p i 1 l“q (] HTI 1 (i l}_ _\
10 X
-~ ; L
r
x —
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Lecture 4:
NAND gate

« NAND gate:

%
xy) =x'+y

e NAND can be implemented using an AND and a NOT:

{>07(x y)'

 AND and not can also be implemented using NAND

X
y —

_
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Lecture 4:
NAND gate

e NOT gate using NAND:

 AND gate using NAND:
PR
) [So—
e OR gate using NAND:
v
r—>

} (x'y) =x+y
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 AND-invert implementation:

x —
Z —_—

* |Invert-OR implementation:

x'+y' + 7' =(xyz2)

Ea T
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NAND only implementation

o Example: implement F = AB + CD using only NAND gates;
= D

e |nvert the output of AND’s and inputs of the OR:
o
D —

BDal
D

Or
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Lecture 4:

NAND only implementation

Example: F(x,y,z) = X.(1,2,3,4,5,7)

F=xy " +x'y+2z

x — :
v —

x'—
F
Yy —

>
B
D

€Concordia
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vz —_—
00 01 11 10
JJJJJ JHI m:; m'2
ol o 1 1 | —— Xy
my 7
x4l 1 1 1
\“\.
———
xy' z Z
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Lecture 4:
NAND only implementation

e Example: implement F = A(CD + B) + BC' using NAN only.
e Sum of product form:

C

D j—;D_‘_
B

A D—l’:DiF
F—)

L4

e Use the procedure discussed (AND-invert and invert-AND):

QA W > WY o
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* The implementation of an OR gate using NOR is:

D

e AND gate implementation using NOR:

X DC
y >°
X
Z

e |nvert-AND

X —=C
y —o0 x'y'z'=x+y+z)
{ —0

e OR-invert
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e Implement F = (A + B)(C + D)E using NOR gates only.

—D—
=)

C
D

-

El
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e Do OR-invert and invert-AND to get:
C —O
) 4 )

>
B

1>

D

‘E:.'I

=P
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Knowledge Check

Question 1: The expression for the function for segment ¢ of
the 7-segment is:

Adc=w+x+y' +z blc=x"z2"+wx+y'z
Cc) both aand b ad) neither a not b

Question 2: Implement F = x'z" + yz' using NAN gate only.

Question 23: Implement F = xy + z using NOR gate only.
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