
Slide 1

Department of Electrical & Computer Engineering

COEN 212:
DIGITAL SYSTEMS DESIGN

Lecture 4: Gate-Level Minimization

Instructor:		Dr.	Reza	Soleymani,	Office:	EV‐5.125,	
Telephone:	848‐2424	ext.:	4103.	

Slide 2

Department of Electrical & Computer Engineering

Slide 3

Department of Electrical & Computer Engineering

Slide 4

Department of Electrical & Computer Engineering

• A K-map for an ݊ variables circuit has 2௡ squares.
• Each square represents a row of the truth table (a minterm).
• For two variables ݔ and ݕ , we have:

• Example: the AND Gate:

Slide 5

Department of Electrical & Computer Engineering

• Example: the OR Gate

• The function is ݉ଵ ൅݉ଶ ൅݉ଷ ൌ ݕᇱݔ ൅ ᇱݕݔ ൅ ݕݔ ൌ ݔ ൅ .ݕ
• Using Boolean Algebra:

ݕᇱݔ ൅ ᇱݕݔ ൅ ݕݔ ൌ xᇱy൅ ݕݔ ൅ xyᇱ ൅ xy
ൌ ሺݔᇱ ൅ݔሻݕ ൅ ݔ y ൅ ᇱݕ ൌ ݔ ൅ ݕ

• Using K-map: Group together
– ݉ଵand ݉ଶ

– ݉ଶ	and ݉ଷ

Slide 6

Department of Electrical & Computer Engineering

• Example: for a function with truth table

• The k-map is:

• And the Boolean expression is ݉ଵ ൅݉ଶ ൌ ݕᇱݔ ൅ 	.ᇱݕݔ

ݔ ݕ	 ܨ
0 0 0
0 1 1
1 0 1
1 1 0

Slide 7

Department of Electrical & Computer Engineering

• For three variables ݔ, ,ݕ we need 2ଷ ,ݖ ൌ 8 squares.
• The k-map is:

• Example: simplify the function ܨ ,ݔ ,ݕ ݖ ൌ ∑ሺ2,3,4,5ሻ.

ܨ ,ݕ,ݔ ݖ ൌ ᇱݕݔ ൅ ݕᇱݔ

Slide 8

Department of Electrical & Computer Engineering

• Example: ܨ ,ݕ,ݔ ݖ ൌ ∑ሺ3,4,6,7ሻ.
• The k-map is:

ܨ ,ݔ ,ݕ ݖ ൌ ݖݕ ൅ ᇱݖݔ

• Example: ݔ, ,ݕ ݖ ൌ ∑ሺ0,2,4,5,6ሻ.
• K-map:

The function:ܨ ,ݕ,ݔ ݖ ൌ ᇱݖ ൅ .ᇱݕݔ

Slide 9

Department of Electrical & Computer Engineering

• It has 16 squares

• In a 4-variable map:
– One square represents one minterm with 4 literals.
– Two adjacent squares represent a term with three literals.
– Four adjacent squares represent a term with 2 variables.
– Eight adjacent squares represent a term with one literal.

Slide 10

Department of Electrical & Computer Engineering

• Example: simplify the function: ܨ ,ݓ ,ݕ,ݔ ݖ ൌ
∑ሺ0,1,2,4,5,6,8,9,12,13,14ሻ.

• The expression is:

ᇱ ᇱ ᇱ

Slide 11

Department of Electrical & Computer Engineering

• A prime implicant is a product term formed by combining the
maximum possible number of squares in a K-map. Number of
squares are a power of two: 1, 2, 4, 8, …

• A single square that cannot be combined with any other
square forms a prime implicant.

• Any two adjacent squares that cannot be part of a group of 4
adjacent cells form a prime implicant.

• 4 adjacent squares that cannot be part of a group of 8
adjacent cells form a prime implicant.

• A prime implicant that has a square that is not part of any
other prime implicant is called an essential prime implicant.

Slide 12

Department of Electrical & Computer Engineering

• Draw the Truth Table if one is not provided.
• Draw the K-map for the circuit using the

Truth Table.
• Find all essential prime implicants and

specify the associated terms.
• Form the simplified expression by logical sum

(OR) of:
– those terms and,
– the minterms remaining.

Slide 13

Department of Electrical & Computer Engineering

• Example:
• ܨ ܦ,ܥ,ܤ,ܣ ൌ ∑ሺ0,2,3,5,7,8,9,10,11,13,15ሻ.

ܨ ൌ ܦܤ ൅ ᇱܦᇱܤ ൅ ܦܥ ൅ ᇱܤܣ

Other	possibilities:		
ܨ ൌ ܦܤ ൅ ᇱܦᇱܤ ൅ ܥᇱܤ ൅ ܦܤ ,ܦܣ ൅ ᇱܦᇱܤ ൅ ܥᇱܤ ൅ ,ᇱܤܣ

ܨ ൌ ܦܤ ൅ ᇱܦᇱܤ ൅ ܦܥ ൅ .ܦܣ

Slide 14

Department of Electrical & Computer Engineering

ܨ ܦ,ܥ,ܤ,ܣ ൌ෍ሺ0,1,2,5,8,9,10ሻ

ܨ ൌ ᇱܦᇱܤ ൅ ᇱܥᇱܤ ൅ ܦᇱܥᇱܣ

Slide 15

Department of Electrical & Computer Engineering

ܨ ܦ,ܥ,ܤ,ܣ ൌ෍ሺ0,1,2,5,8,9,10ሻ

So: ᇱܨ ൌ ܤܣ ൅ ܦܥ ൅ ′ܦܤ

And using De Morgan’s we get:
ܨ ൌ ሺܣᇱ ൅ ᇱܥᇱሻሺܤ ൅ ᇱܤᇱሻሺܦ ൅ ሻܦ

Slide 16

Department of Electrical & Computer Engineering

ܨ ൌ ᇱܦᇱܤ ൅ ᇱܥᇱܤ ൅ ܦᇱܥᇱܣ

• AND-OR implementation

Slide 17

Department of Electrical & Computer Engineering

ܨ ൌ ሺܣᇱ ൅ ᇱܥᇱሻሺܤ ൅ ᇱܤᇱሻሺܦ ൅ ሻܦ

• OR-AND implementation

Slide 18

Department of Electrical & Computer Engineering

• When we don’t care about the value of the logic
for a certain combination of variables, we put a X
instead of a 0 or a 1 in the square.

• A Don’t care square may be considered as a 1 or a
0 square and combined with other squares of similar
content when doing simplification.

• The choice is made such that the number of gates
is minimized.

Slide 19

Department of Electrical & Computer Engineering

• Input: Digits 0 to 9 (in binary).
• The output: Digits on the LED Display.

• Input has 4 bits. So, 16 possibilities.
• But we only need 10 of 16 and don’t care for the

rest.

Slide 20

Department of Electrical & Computer Engineering

• Truth Table for the 7-segment encoder.

ݓ ݔ ݕ	 ݖ	 ܽ ܾ ܿ ݀ ݁ ݂ ݃

0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 0
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 1 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1 1
0 1 1 0 1 0 1 1 1 1 1
0 1 1 1 0 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 0 1 1
1 0 1 0 X X X X X X X
1 0 1 1 X X X X X X X
1 1 0 0 X X X X X X X
1 1 0 1 X X X X X X X
1 1 1 0 X X X X X X X
1 1 1 1 X X X X X X X

Slide 21

Department of Electrical & Computer Engineering

• K-map for pin ݁ of the LED:

• ݁ ൌ ᇱݖᇱݔ ൅ .ᇱݖݕ

Slide 22

Department of Electrical & Computer Engineering

• NAND gate:

• NAND can be implemented using an AND and a NOT:

• AND and not can also be implemented using NAND

Slide 23

Department of Electrical & Computer Engineering

• NOT gate using NAND:

• AND gate using NAND:

• OR gate using NAND:

Slide 24

Department of Electrical & Computer Engineering

• AND-invert implementation:

• Invert-OR implementation:

Slide 25

Department of Electrical & Computer Engineering

• Example: implement ܨ ൌ ܤܣ ൅ ܦܥ using only NAND gates;

• Invert the output of AND’s and inputs of the OR:

Or

Slide 26

Department of Electrical & Computer Engineering

• Example: ܨ ,ݕ,ݔ ݖ ൌ ∑ሺ1,2,3,4,5,7ሻ

• ܨ ൌ ᇱݕݔ ൅ ݕᇱݔ ൅ ݖ

Slide 27

Department of Electrical & Computer Engineering

• Example: implement ܨ ൌ ܣ ܦܥ ൅ ܤ ൅ ᇱܥܤ using NAN only.
• Sum of product form:

• Use the procedure discussed (AND-invert and invert-AND):

Slide 28

Department of Electrical & Computer EngineeringNOR implementation

• The implementation of an OR gate using NOR is:

• AND gate implementation using NOR:

• OR-invert

• Invert-AND

Slide 29

Department of Electrical & Computer EngineeringNOR implementation

• Implement ܨ ൌ ሺܣ ൅ ሻܤ ܥ ൅ ܦ ܧ using NOR gates only.

Slide 30

Department of Electrical & Computer EngineeringNOR implementation

• Do OR-invert and invert-AND to get:

• Or:

Slide 31

Department of Electrical & Computer Engineering

• Question 1: The expression for the function for segment c of
the 7-segment is:

• a) ܿ ൌ ݓ ൅ ݔ ൅ ᇱݕ ൅ ′ݖ b) ܿ ൌ ᇱݖᇱݔ ൅ ݔᇱݓ ൅ ݖᇱݕ
• c) both a and b ad) neither a not b

• Question 2: Implement F ൌ ᇱݖᇱݔ ൅ ᇱݖݕ using NAN gate only.

• Question 23: Implement F ൌ ݕݔ ൅ ݖ using NOR gate only.

