

COEN 212: DIGITAL SYSTEMS DESIGN Lecture 4: Gate-Level Minimization

Instructor: Dr. Reza Soleymani, Office: EV-5.125, Telephone: 848‐2424 ext.: 4103.

Lecture 4: Objectives of this lecture

- K-Maps.
- Logic simplification using K-Maps.
- Incompletely specified circuits ("Don't care condition).
- NAND-only implementation.
- NOR-only implementation.

Lecture 4: Reading for this lecture

- Digital Design by M. Morris R. Mano and Michael D. Ciletti, 6th Edition, Pearson, 2018:
	- $-$ Chapter 3 (3.1 to 3.6)

Two-value K-maps

- •A K-map for an n variables circuit has 2^n squares.
- •Each square represents a row of the truth table (a minterm).
- •For two variables x and y , we have:

•Example: the AND Gate:

$$
x \begin{array}{c}\ny \\
y \\
0 \\
\hline\n0 \\
x\n\end{array}
$$
\n
\n
$$
x \begin{array}{c}\ny \\
0 \\
\hline\n0 \\
1\n\end{array}
$$
\n
\n
$$
x \begin{array}{c}\n1 \\
n_0 \\
\hline\n0 \\
1\n\end{array}
$$

Two-value K-Maps

Example: the OR Gate

- The function is $m_1 + m_2 + m_3 = x'y + xy' + xy = x + y$.
- **Using Boolean Algebra:**

$$
x'y + xy' + xy = x'y + xy + xy' + xy = (x' + x)y + x(y + y') = x + y
$$

- Using K-map: Group together \bullet
	- m_1 and m_2
	- m_2 and m_3

Two-value K-Maps

Example: for a function with truth table \bullet

The k-map is:

And the Boolean expression is $m_1 + m_2 = x'y + xy'$. \bullet

Three-value K-Maps

- •For three variables x, v, z, we need $2^3 = 8$ squares.
- •The k-map is:

•Example: simplify the function $F(x, y, z) = \sum(2,3,4,5)$.

Three-value K-Maps

- Example: $F(x, y, z) = \sum (3, 4, 6, 7)$.
- •The k-map is:

- •Example: $(x, y, z) = \sum (0, 2, 4, 5, 6)$.
- \mathcal{Y} K-map: \bullet $00\,$ 01 11 10 yz' m_1 m_3 $m₂$ $\sqrt{1}$ $m₅$ $m₇$ m_{6} $x \nmid 1$ 1 $\overline{1}$ \mathcal{Z} xy'

The function: $F(x, y, z) = z' + xy'$.

Four-value K-Maps

•It has 16 squares

- \bullet In a 4-variable map:
	- One square represents one minterm with 4 literals.
	- Two adjacent squares represent a term with three literals.
	- Four adjacent squares represent a term with 2 variables.
	- Eight adjacent squares represent a term with one literal.

Four-value K-Maps

Example: simplify the function: $F(w, x, y, z) =$ \bullet $\Sigma(0,1,2,4,5,6,8,9,12,13,14).$

The expression is: \bullet

$$
F(w, x, y, z) = y' + w'z' + xz'
$$

K-Maps: Prime Implicants

- • A prime implicant is a product term formed by combining the maximum possible number of squares in a K-map. Number of squares are a power of two: 1, 2, 4, 8, …
- • A single square that cannot be combined with any other square forms a prime implicant.
- • Any two adjacent squares that cannot be part of a group of 4 adjacent cells form a prime implicant.
- • 4 adjacent squares that cannot be part of a group of 8 adjacent cells form a prime implicant.
- • A prime implicant that has a square that is not part of any other prime implicant is called an essential prime implicant.

Lecture 4: **K-Maps: General Procedure**

- \bullet Draw the Truth Table if one is not provided.
- Draw the K-map for the circuit using the Truth Table.
- Find all essential prime implicants and specify the associated terms.
- Form the simplified expression by logical sum (OR) of:
	- those terms and,
	- –the minterms remaining.

Lecture 4: K-Maps: General Procedure

· Example:

 $F(A, B, C, D) = \sum (0,2,3,5,7,8,9,10,11,13,15).$

 $F = BD + B'D' + CD + AB'$

Other possibilities:

 $F = BD + B'D' + B'C + AD$, $BD + B'D' + B'C + AB'$, $F = BD + B'D' + CD + AD.$

Lecture 4: **K-Maps: Product of Sums**

 $F = B'D' + B'C' + A'C'D$

Lecture 4: **K-Maps: Product of Sums**

So: $F' = AB + CD + BD'$

And using De Morgan's we get:

 $F = (A' + B')(C' + D')(B' + D)$

Implementation: Sum of Products

 $F = B'D' + B'C' + A'C'D$

• AND-OR implementation

Implementation: Product of Sums

• OR-AND implementation

Lecture 4: Don't' care condition

- • When we don't care about the value of the logic for a certain combination of variables, we put a X instead of a 0 or a 1 in the square.
- A Don't care square may be considered as a 1 or a 0 square and combined with other squares of similar content when doing simplification.
- The choice is made such that the number of gates is minimized.

Don't' care condition: 7-segment example

- •Input: Digits 0 to 9 (in binary).
- •The output: Digits on the LED Display.

- Input has 4 bits. So, 16 possibilities.
- \bullet But we only need 10 of 16 and don't care for the rest.

Don't' care condition: 7-segment example

• Truth Table for the 7-segment encoder.

Don't' care condition: 7-segment example

 \bullet AND and not can also be implemented using NAND

Lecture 4: NAND gate

• NOT gate using NAND:

$$
x \longrightarrow (x x)' = x'
$$

•AND gate using NAND:

 \bullet OR gate using NAND:

Lecture 4: NAND gate

•AND-invert implementation:

•Invert-OR implementation:

NAND only implementation

Example: implement $F = AB + CD$ using only NAND gates;

Invert the output of AND's and inputs of the OR:

Or

NAND only implementation

Example: $F(x, y, z) = \sum_{i=1}^{n} (1, 2, 3, 4, 5, 7)$

 $F = xy' + x'y + z$

NAND only implementation

•**Example:** implement $F = A(CD + B) + BC'$ using NAN only. •Sum of product form:

•Use the procedure discussed (AND-invert and invert-AND):

Lecture 4: NOR implementation
 Department of Electrical & Computer Engineering

•The implementation of an OR gate using NOR is:

•AND gate implementation using NOR:

•OR-invert

•Invert-AND

$$
x - 3
$$

y - 3
z - 3
x'y'z' = (x + y + z)'

Lecture 4: NOR implementation

Implement $F = (A + B)(C + D)E$ using NOR gates only. \bullet

Lecture 4: **NOR** implementation
NOR implementation

•Do OR-invert and invert-AND to get:

•Or:

Lecture 4: Knowledge Check

- •**Question 1:** The expression for the function for segment c of the 7-segment is:
- (a) $c = w + x + y' + z'$ b) $c = x'z' + w'x + y'z$
- c) both a and b ad) neither a not b

•

-
- **Question 2:** Implement $F = x'z' + yz'$ using NAN gate only.
- \bullet **Question 23:** Implement $F = xy + z$ using NOR gate only.