
Slide 1

Department of Electrical & Computer Engineering

COEN 212:
DIGITAL SYSTEMS DESIGN

Lecture 5.1: Other two level logic implementations

Instructor: Dr. Reza Soleymani, Office: EV-5.125,
Telephone: 848-2424 ext.: 4103.

Slide 2

Department of Electrical & Computer Engineering

Lecture 5.1:
Objectives of this lecture

• In this lecture, we see:
– NAND-AND implementation.
– AND-NOR implementation.
– OR-NAND implementation.
– NOR-OR implementation.
– AND-OR-INVERT or OR-AND-INVERT

• We will also talk about XOR and its application

Slide 3

Department of Electrical & Computer Engineering

Lecture 5.1:
Reading for this lecture

• Digital Design by M. Morris R. Mano and
Michael D. Ciletti, 6th Edition, Pearson, 2018:
– Chapter 3 (3.7 and 3.8)

Slide 4

Department of Electrical & Computer Engineering

Lecture 5.1:
Other two-level logic combinations

• Consider the four basic logic gates AND, OR, NAND, NOR.
• There are 16 possible two level arrangements.
• 8 of these combinations such as AND-AND, OR-OR

degenerate into single operations.
• The non-degenerate cases are:

AND-OR OR-AND

NAND-NAND NOR-NOR

NAND-AND
AND-NOR

NOR-OR
OR-NAND

OR-AND-INVERT AND-OR-INVERT

Slide 5

Department of Electrical & Computer Engineering
Lecture 5.1:
AND-OR-INVERT Implementation

• The AND-NOR combination, or equivalently, the AND-OR-
INVERT is equivalent to the NAND-AND configuration.

• Procedure: Simply design the sum of products for the
complement of the function and invert the output.

• Example: implementing 𝐹𝐹 = (𝐴𝐴𝐴𝐴 + 𝐶𝐶𝐶𝐶 + 𝐸𝐸)′:

– AND-OR-INVERT:

Slide 6

Department of Electrical & Computer Engineering
Lecture 5.1:
AND-OR-INVERT Implementation

• The circuit can be transformed into NAND-AND by:
– Using invert-AND

for NOR gate

– And moving
– the inverters to the
– Beginning of the line:

Slide 7

Department of Electrical & Computer Engineering
Lecture 5.1:
Wired Logic

– Two NAND gates implemented using open collector TTL when tied
together, their outputs will be AND with each other. This is called a wired
AND operation.

𝐹𝐹 = (𝐴𝐴𝐴𝐴)′. (𝐶𝐶𝐶𝐶)′= (𝐴𝐴′ + 𝐵𝐵′). 𝐶𝐶′ + 𝐷𝐷′ = (𝐴𝐴𝐴𝐴 + 𝐶𝐶𝐶𝐶)′,
– Also When two NOR gates implemented in ECL (Emitter Coupled Logic)

are wired together, their outputs are OR’d (wired OR).

𝐹𝐹 = (𝐴𝐴 + 𝐵𝐵)′+(𝐶𝐶 + 𝐷𝐷)′= 𝐴𝐴′𝐵𝐵′ + 𝐶𝐶′𝐷𝐷′ = [(𝐴𝐴 + 𝐵𝐵)(𝐶𝐶 + 𝐷𝐷)]′

Slide 8

Department of Electrical & Computer Engineering
Lecture 5.1:
OR-AND-INVERT implementation

• The OR-NAND configuration is OR-AND and an inverter,
• i.e., a product of sum circuit whose output is inverted.
• It takes care of OR-NAND and NOR-OR cases.
• Procedure: Simply design the product of sums for the

complement of the function and invert the output.
• Example: 𝐹𝐹 = [(𝐴𝐴 + 𝐵𝐵)(𝐶𝐶 + 𝐷𝐷)𝐸𝐸]′

– OR-NAND
implementation:

Slide 9

Department of Electrical & Computer Engineering
Lecture 5.1:
OR-AND-INVERT implementation

• Replacing the NAND with:

– We get

– Or

Slide 10

Department of Electrical & Computer Engineering
Lecture 5.1:
Example
• Implement the function F using:

– a) OR-NAND, b) NOR-OR, c) AND-NOR, d) NAND-AND

We have:
1) 𝐹𝐹 = 𝑥𝑥′𝑦𝑦′𝑧𝑧′ + 𝑥𝑥𝑥𝑥𝑧𝑧′ ⟹ 𝐹𝐹′ = (𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧)(𝑧𝑧′ + 𝑦𝑦′ + 𝑧𝑧)
and
2) 𝐹𝐹′ = 𝑧𝑧 + 𝑥𝑥𝑦𝑦′ + 𝑥𝑥′𝑦𝑦 ⟹ 𝐹𝐹 = (𝑧𝑧 + 𝑥𝑥𝑦𝑦′ + 𝑥𝑥′𝑦𝑦)′

The first one gives us 𝐹𝐹 = [𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 𝑥𝑥′ + 𝑦𝑦′ + 𝑧𝑧]′: OR-NAND.

a) OR-NAND

Slide 11

Department of Electrical & Computer Engineering
Lecture 5.1:
Example

• OR-NAND can be easily changed into: NOR-OR:

– b) NOR-OR

• 𝐹𝐹 = (𝑧𝑧 + 𝑥𝑥𝑦𝑦′ + 𝑥𝑥′𝑦𝑦)′ gives:
–
– c) AND-NOR

• That can be changed
– d) NAND-AND

Slide 12

Department of Electrical & Computer Engineering
Lecture 5.1:
Exclusive-OR: XOR
• The output is 1 if 𝑥𝑥 ≠ 𝑦𝑦

K-map

So: 𝑥𝑥⨁𝑦𝑦 = 𝑚𝑚1 + 𝑚𝑚2 = 𝑥𝑥′𝑦𝑦 + 𝑥𝑥𝑦𝑦′

– X-Nor is defined as the complement of XOR:
(𝑥𝑥⨁𝑦𝑦)′= (𝑥𝑥𝑦𝑦′ + 𝑥𝑥′𝑦𝑦)′= 𝑥𝑥′ + 𝑦𝑦 𝑥𝑥 + 𝑦𝑦′ = 𝑥𝑥′𝑦𝑦′ + 𝑥𝑥𝑥𝑥

– X-Nor is an indicator of equality of its inputs.

𝑥𝑥 𝑦𝑦 𝑥𝑥⨁𝑦𝑦
0 0 0
0 1 1
1 0 1
1 1 0

𝑥𝑥⨁0 = 𝑥𝑥

𝑥𝑥⨁1 = 𝑥𝑥′

𝑥𝑥⨁𝑥𝑥 = 0

𝑥𝑥⨁𝑥𝑥′ = 1

𝑥𝑥⨁𝑦𝑦′ = 𝑥𝑥′⨁𝑦𝑦 = (𝑥𝑥⨁𝑦𝑦)′

Slide 13

Department of Electrical & Computer Engineering
Lecture 5.1:
XOR
• X-OR is both commutative and associative, i.e.,

– 𝑥𝑥⨁𝑦𝑦 = 𝑥𝑥⨁𝑦𝑦 and 𝑥𝑥⨁𝑦𝑦 ⨁𝑧𝑧 = 𝑥𝑥⨁ 𝑦𝑦⨁𝑧𝑧
– This assures multi-input XOR’s can be implemented using 2-inpt

XOR’s.
– From the equality: 𝑥𝑥⨁𝑦𝑦 = 𝑥𝑥𝑦𝑦′ + 𝑥𝑥′𝑦𝑦 we have the implementation

– XOR can also be implemented using 4 NAND gates (verify)

Slide 14

Department of Electrical & Computer Engineering
Lecture 5.1:
Using XOR: Odd Functions
• Consider an XOR with three inputs 𝑥𝑥, 𝑦𝑦, 𝑧𝑧:

𝑥𝑥⨁𝑦𝑦⨁𝑧𝑧 = 𝑥𝑥⨁𝑦𝑦 ′𝑧𝑧 + 𝑥𝑥⨁𝑦𝑦 𝑧𝑧′ = 𝑥𝑥𝑦𝑦′ + 𝑥𝑥′𝑦𝑦 ′𝑧𝑧 + 𝑥𝑥𝑦𝑦′ + 𝑥𝑥′𝑦𝑦 𝑧𝑧′

= 𝑥𝑥′𝑦𝑦′ + 𝑥𝑥𝑥𝑥 𝑧𝑧 + 𝑥𝑥𝑦𝑦′ + 𝑥𝑥′𝑦𝑦 𝑧𝑧′
= 𝑥𝑥′𝑦𝑦′𝑧𝑧 + 𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑥𝑥𝑦𝑦′𝑧𝑧′ + 𝑥𝑥′𝑦𝑦𝑧𝑧′ = ∑(1,2,4,7)

• The k-map for 𝑥𝑥⨁𝑦𝑦⨁𝑧𝑧 is:

• The k-map for
X-NOR (𝑥𝑥⨁𝑦𝑦⨁𝑧𝑧)′ is:

Slide 15

Department of Electrical & Computer Engineering
Lecture 5.1:
Using XOR: Odd Functions
• XOR of four variables 𝑤𝑤, 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 is:

𝑤𝑤⨁𝑥𝑥⨁𝑦𝑦⨁𝑧𝑧 = �(1, 2, 4, 7, 8, 11, 13, 14)

• The k-map for𝑤𝑤⨁𝑥𝑥⨁𝑦𝑦⨁𝑧𝑧 is:

• This is true for any number of bits.

Slide 16

Department of Electrical & Computer Engineering
Lecture 5.1:
Using XOR: Error Detection
• Consider writing data bytes in a storage: a hard disk, CD or

DVD.
• A byte consists of 8 bits so it take 256 values.
• One bit being flipped in a byte we get another byte and

make an error without knowing.
• If we had kept the record of the number of ones being odd or

even, we could detect that something had gone wrong. For
example, for the byte 11010011, the parity is odd
since 1⨁1⨁0⨁1⨁0⨁0⨁1⨁1 = 1

• We add this parity bit and store 110100111 making the parity
even.

• When reading back the bits, we XOR the bits and if we get
zero, we are OK, else, we detect an error.

Slide 17

Department of Electrical & Computer Engineering
Lecture 5.1:
Using XOR: Error Correction
• Example: (7, 4) Hamming Code:

𝑤𝑤 𝑥𝑥 𝑦𝑦 𝑧𝑧 𝑝𝑝1 = 𝑤𝑤⨁𝑥𝑥⨁𝑦𝑦 𝑝𝑝1 = 𝑥𝑥⨁𝑦𝑦⨁𝑧𝑧 𝑝𝑝1 = 𝑤𝑤⨁𝑦𝑦⨁𝑧𝑧
0 0 0 0 0 0 0
0 0 0 1 0 1 1
0 0 1 0 1 1 1
0 0 1 1 1 0 0
0 1 0 0 1 1 0
0 1 0 1 1 0 1
0 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 0 0 1 0 1
1 0 0 1 1 1 0
1 0 1 0 0 1 0
1 0 1 1 0 0 1
1 1 0 0 0 1 1
1 1 0 1 0 0 0
1 1 1 0 1 0 0
1 1 1 1 1 1 1

Slide 18

Department of Electrical & Computer Engineering
Lecture 5.1:
Using XOR: Error Correction
• Hamming Code:

	COEN 212:�DIGITAL SYSTEMS DESIGN�Lecture 5.1: Other two level logic implementations�
	Lecture 5.1: �Objectives of this lecture
	Lecture 5.1: �Reading for this lecture
	Lecture 5.1:�Other two-level logic combinations
	Lecture 5.1:�AND-OR-INVERT Implementation
	Lecture 5.1:�AND-OR-INVERT Implementation
	Lecture 5.1:�Wired Logic
	Lecture 5.1:�OR-AND-INVERT implementation
	Lecture 5.1:�OR-AND-INVERT implementation
	Lecture 5.1:�Example
	Lecture 5.1:�Example
	Lecture 5.1:�Exclusive-OR: XOR
	Lecture 5.1:�XOR
	Lecture 5.1:�Using XOR: Odd Functions
	Lecture 5.1:�Using XOR: Odd Functions
	Lecture 5.1:�Using XOR: Error Detection
	Lecture 5.1:�Using XOR: Error Correction
	Lecture 5.1:�Using XOR: Error Correction
	Lecture 5.1:�Knowledge Check

