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Department of Electrical & Computer Engineering

COEN 212:
DIGITAL SYSTEMS DESIGN I

Lecture 7: Common Combinational Logic Circuits
(Adders and Multipliers)

Instructor:  Dr. Reza Soleymani, Office: EV-5.125, 
Telephone: 848-2424 ext.: 4103. 
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Lecture 7: 
Objectives of this lecture

• In this lecture, we talk about: 
– Adders.
– Subtractors.
– Multipliers and,
– Magnitude Comaparators.

• In the next lecture, we will talk about:
– Decoders, Encoders, Multiplexers
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Lecture 7: 
Reading for this lecture

• Digital Design by M. Morris R. Mano and 
Michael D. Ciletti, 6th Edition, Pearson, 2018:
– Chapter 4 (4.5 to 4.8)
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Lecture 7:
Binary Adders

• Binary numbers are added bit by bit. 
• To add two bits, we need a Full Adder.
• It takes in two bits and a carry and outputs a sum and a carry:

• A full adder can be implemented either directly or using two 
half adder. A half adder has two inputs and two outputs. 

Full Adder:                                              Half Adder:
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Lecture 7:
Addition: HA

• Truth table for a half adder is:

• So:  
𝑆𝑆 = 𝐴𝐴′𝐵𝐵 + 𝐴𝐴𝐵𝐵′ = 𝐴𝐴⨁𝐵𝐵

𝐶𝐶 = 𝐴𝐴𝐵𝐵
• The implementation is:

𝐴𝐴 𝐵𝐵 𝐶𝐶 𝑆𝑆
0    0 0    0
0    1 0    1
1    0 0    1
1    1 1    0
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Lecture 7:
Addition: HA

• Half adder can also be implemented using XOR:

• Implementing a FA using two HA’s:
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Lecture 7:
Addition: FA implementation uisng HA’s

• Half adder can also be implemented using XOR:

𝑆𝑆𝑖𝑖 = 𝐴𝐴𝑖𝑖⨁𝐵𝐵𝑖𝑖⨁𝐶𝐶𝑖𝑖
• Also, :  𝐶𝐶𝑖𝑖+1 = 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖 + 𝐴𝐴𝑖𝑖𝐶𝐶𝑖𝑖 + 𝐵𝐵𝑖𝑖𝐶𝐶𝑖𝑖

= 𝐴𝐴𝑖𝑖 𝐵𝐵𝑖𝑖 + 𝐶𝐶𝑖𝑖 + 𝐵𝐵𝑖𝑖 𝐴𝐴𝑖𝑖 + 𝐶𝐶𝑖𝑖

= 𝐴𝐴𝑖𝑖 𝐵𝐵𝑖𝑖 + 𝐵𝐵𝑖𝑖′𝐶𝐶𝑖𝑖 + 𝐵𝐵𝑖𝑖 𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖′𝐶𝐶𝑖𝑖

= 𝐶𝐶𝑖𝑖 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖′ + 𝐴𝐴𝑖𝑖′𝐵𝐵𝑖𝑖 + 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖

= 𝐶𝐶𝑖𝑖 𝐴𝐴𝑖𝑖⨁𝐵𝐵𝑖𝑖 + 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖
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Lecture 7:
Addition: FA direct implementation

• Truth Table of FA: K-map of S

𝑆𝑆 = 𝑥𝑥′𝑦𝑦′𝑧𝑧 + 𝑥𝑥′𝑦𝑦𝑧𝑧𝑧 + 𝑥𝑥𝑦𝑦′𝑧𝑧𝑧 + 𝑥𝑥𝑦𝑦𝑧𝑧

K-map of C

𝐶𝐶 = 𝑥𝑥𝑦𝑦 + 𝑥𝑥𝑧𝑧 + 𝑦𝑦𝑧𝑧

𝐱𝐱 𝐲𝐲 𝐳𝐳 𝐂𝐂 𝐒𝐒

0      0      0 0      0
0      0      1 0      1
0      1      0 0      1
0      1      1 1      0
1      0      0 0      1
1      0      1 1      0
1      1      0 1      0
1      1      1 1      1
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Lecture 7:
Addition: FA direct implementation

• The implementation for 𝑆𝑆

𝑆𝑆 = 𝑥𝑥′𝑦𝑦′𝑧𝑧 + 𝑥𝑥′𝑦𝑦𝑧𝑧𝑧 + 𝑥𝑥𝑦𝑦′𝑧𝑧𝑧 + 𝑥𝑥𝑦𝑦𝑧𝑧

• The implementation for 𝐶𝐶

𝐶𝐶 = 𝑥𝑥𝑦𝑦 + 𝑥𝑥𝑧𝑧 + 𝑦𝑦𝑧𝑧
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Lecture 7:
Binary adders/carry propagation
• Four-bit adder: Delay 2m = 2 × 4 = 8

• Carry Lookahead
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Lecture 7:
Binary adders/carry Lookahead
• Note that 𝐺𝐺𝑖𝑖 generates a carry when both the inputs 𝐴𝐴𝑖𝑖 and 𝐵𝐵𝑖𝑖

are 1 regardless of the value of 𝐶𝐶𝑖𝑖. 
• 𝐺𝐺𝑖𝑖 is called a carry generator.
• 𝑃𝑃𝑖𝑖 decides whether a carry will propagate from stage 𝑖𝑖 to 

stage 𝑖𝑖 + 1. It is called a carry propagator.
• Note that 𝑃𝑃𝑖𝑖 and 𝐺𝐺𝑖𝑖 are generated from 𝐴𝐴𝑖𝑖 and 𝐵𝐵𝑖𝑖 in one gate 

delay. 
• Now, let’s consider the example of 4-bit adder.
• 𝐶𝐶0 = the input carry
• 𝐶𝐶1 = 𝐺𝐺0 + 𝑃𝑃0𝐶𝐶0
• 𝐶𝐶2 = 𝐺𝐺1 + 𝑃𝑃1𝐶𝐶1 = 𝐺𝐺1 + 𝑃𝑃1 𝐺𝐺0 + 𝑃𝑃0𝐶𝐶0 = 𝐺𝐺1 + 𝑃𝑃1𝐺𝐺0 + 𝑃𝑃1𝑃𝑃0𝐶𝐶0
• 𝐶𝐶3 = 𝐺𝐺2 + 𝑃𝑃2𝐶𝐶2 = 𝐺𝐺2 + 𝑃𝑃2𝐺𝐺1 + 𝑃𝑃2𝑃𝑃1𝐺𝐺0 + 𝑃𝑃2𝑃𝑃1𝑃𝑃0𝐶𝐶0
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Lecture 7:
Binary adders/carry Lookahead

• carry lookahead generator:
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Lecture 7:
Binary adders/carry Lookahead

• carry lookahead generator:
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Lecture 7:
Subtraction:

• Adder/Subtractor:

• When 𝑀𝑀 = 0, we get 𝐴𝐴+𝐵𝐵.
• When 𝑀𝑀 = 1, we get A-B.
• V=1 flags an overflow.
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Lecture 7:
Subtraction: Example

• Example: 8-bit adder.
• Numbers are from -127 to +127 (from 11111111 to 01111111).
• The result may fall out of range.
• Example: Adding +60 and +70 = 130 > 127

+60                    00111100                         
+70                    01000110

+130                  10000010     → -2

• Subtraction +70 from -60
-60                    11000100
-70                    10111010
-130               1 01111110    → +1

sign bit

overflow
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Lecture 7:
BCD Adder

• Adding two decimal digits and a carry, we get a number 
between 0 and 19.
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Lecture 7:
BCD Adder

• 𝐶𝐶 = 1 whenever 𝐾𝐾 = 1 or 𝑍𝑍8 = 1.
• 𝐶𝐶 = 0 when 𝑍𝑍8 = 1 and both 𝑍𝑍4 and 𝑍𝑍2 are zero. 
• So, 

𝐶𝐶 = 𝐾𝐾 + 𝑍𝑍8 𝑍𝑍2 + 𝑍𝑍4 = 𝐾𝐾 + 𝑍𝑍8𝑍𝑍4 + 𝑍𝑍8𝑍𝑍2
• When 𝐶𝐶 = 1, we need to add 6 (0110) to 𝑍𝑍8𝑍𝑍4𝑍𝑍2𝑍𝑍1 to get 

𝑆𝑆8𝑆𝑆4𝑆𝑆2𝑆𝑆1.
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Lecture 7:
Binary multiplication

• 𝐶𝐶 = 1 whenever 𝐾𝐾 = 1 or 𝑍𝑍8 = 1.

• 2-by-2 multiplier:

multiplying 𝐵𝐵1𝐵𝐵0 by 𝐴𝐴1
and shifting the result

multiplying 𝐵𝐵1𝐵𝐵0 by 𝐴𝐴0
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Lecture 7:
Binary multiplication

• Example:  4-bit by 3-bit multiplier

                                       𝐵𝐵3    𝐵𝐵2    𝐵𝐵1    𝐵𝐵0 

                                                𝐴𝐴2   𝐴𝐴1    𝐴𝐴0 

                                    𝐴𝐴0𝐵𝐵3    𝐴𝐴0𝐵𝐵2    𝐴𝐴0𝐵𝐵1    𝐴𝐴0𝐵𝐵0 

                      𝐴𝐴1𝐵𝐵3    𝐴𝐴1𝐵𝐵2    𝐴𝐴1𝐵𝐵1    𝐴𝐴1𝐵𝐵0 

        𝐴𝐴2𝐵𝐵3    𝐴𝐴2𝐵𝐵2    𝐴𝐴2𝐵𝐵1    𝐴𝐴2𝐵𝐵0 

𝐶𝐶6     𝐶𝐶5          𝐶𝐶4          𝐶𝐶3         𝐶𝐶2         𝐶𝐶1         𝐶𝐶0 
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Lecture 7:
Magnitude Comparator

• It compares two numbers 𝐴𝐴 = 𝐴𝐴3𝐴𝐴2𝐴𝐴1𝐴𝐴0 and 𝐵𝐵 = 𝐵𝐵3𝐵𝐵2𝐵𝐵1𝐵𝐵0 and 
decides whether 𝐴𝐴 = 𝐵𝐵,𝐴𝐴 > 𝐵𝐵 or 𝐴𝐴 < 𝐵𝐵.

• 𝐴𝐴 = 𝐵𝐵 if and only if 𝐴𝐴3 = 𝐵𝐵3,𝐴𝐴2 = 𝐵𝐵2,𝐴𝐴1 = 𝐵𝐵1,𝐴𝐴0 = 𝐵𝐵0.
• 𝐴𝐴3 = 𝐵𝐵3 if 𝑋𝑋3 = 𝐴𝐴3𝐵𝐵3 + 𝐴𝐴3′ 𝐵𝐵3′ .
• Similarly 𝑋𝑋𝑖𝑖 = 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖 + 𝐴𝐴𝑖𝑖′𝐵𝐵𝑖𝑖′ , 𝑖𝑖 = 0, 1, 2, 3 shows 𝐴𝐴𝑖𝑖 = 𝐵𝐵𝑖𝑖.
• So:                                 𝐴𝐴 = 𝐵𝐵 = 𝑋𝑋3𝑋𝑋2𝑋𝑋1𝑋𝑋0.
• Case of: 𝐴𝐴 > 𝐵𝐵: 𝐴𝐴 > 𝐵𝐵
• If 𝐴𝐴3 is equal to 1 and 𝐵𝐵3 = 0. So, if 𝐴𝐴3𝐵𝐵3′ = 1, then 𝐴𝐴 > 𝐵𝐵. 
• If 𝐴𝐴3 = 𝐵𝐵3, i.e., if 𝑋𝑋3 = 1 and 𝐴𝐴2 = 1 and 𝐵𝐵2 = 0, i.e., if 𝑋𝑋3𝐴𝐴2𝐵𝐵2′ = 1.
• if 𝑋𝑋3𝑋𝑋2𝐴𝐴1𝐵𝐵1′ = 1 or 𝑋𝑋3𝑋𝑋2𝑋𝑋1𝐴𝐴0𝐵𝐵0′ = 1. 

𝐴𝐴 > 𝐵𝐵 = 𝐴𝐴3𝐵𝐵3′ + 𝑋𝑋3𝐴𝐴2𝐵𝐵2′ + 𝑋𝑋3𝑋𝑋2𝐴𝐴1𝐵𝐵1′ + 𝑋𝑋3𝑋𝑋2𝑋𝑋1𝐴𝐴0𝐵𝐵0′

and
𝐴𝐴 < 𝐵𝐵 = 𝐴𝐴3′ 𝐵𝐵3 + 𝑋𝑋3𝐴𝐴2′ 𝐵𝐵2 + 𝑋𝑋3𝑋𝑋2𝐴𝐴1′ 𝐵𝐵1 + 𝑋𝑋3𝑋𝑋2𝑋𝑋1𝐴𝐴0′ 𝐵𝐵0
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Lecture 7:
Magnitude Comparator

• 4-bit Magnitude Comparator:
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Lecture 7:
Knowledge Check

• Question 1: To add two 8-bit numbers, the number of Half-
Adders needed is:

• a) 8, b) 15, c) 16, d) 17
• Question 2: If the gate delay is 10 ns (nano seconds), what 

would be the delay in adding two 8 bit numbers using carry 
look ahead?

• a) 40 ns, b) 160 ns, c) 80 ns, d) 20 ns

• Question 3:
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