

COEN 212: DIGITAL SYSTEMS DESIGN I Lecture 7: Common Combinational Logic Circuits (Adders and Multipliers)

Instructor: Dr. Reza Soleymani, Office: EV-5.125, Telephone: 848-2424 ext.: 4103.

Lecture 7: Objectives of this lecture

- In this lecture, we talk about:
 - Adders.
 - Subtractors.
 - Multipliers and,
 - Magnitude Comaparators.
- In the next lecture, we will talk about:
 - Decoders, Encoders, Multiplexers

Lecture 7: Reading for this lecture

 Digital Design by M. Morris R. Mano and Michael D. Ciletti, 6th Edition, Pearson, 2018:
 – Chapter 4 (4.5 to 4.8)

Lecture 7: Binary Adders

- Binary numbers are added bit by bit.
- To add two bits, we need a Full Adder.
- It takes in two bits and a carry and outputs a sum and a carry:
- A full adder can be implemented either directly or using two half adder. A half adder has two inputs and two outputs.

Lecture 7: **Addition: HA**

The implementation is:

Lecture 7: Addition: HA

• Half adder can also be implemented using XOR:

• Implementing a FA using two HA's:

Addition: FA implementation uisng HA's

• Half adder can also be implemented using XOR:

 $S_{i} = A_{i} \bigoplus B_{i} \bigoplus C_{i}$ Also, : $C_{i+1} = A_{i}B_{i} + A_{i}C_{i} + B_{i}C_{i}$ $= A_{i}(B_{i} + C_{i}) + B_{i}(A_{i} + C_{i})$ $= A_{i}(B_{i} + B_{i}'C_{i}) + B_{i}(A_{i} + A_{i}'C_{i})$ $= C_{i}(A_{i}B_{i}' + A_{i}'B_{i}) + A_{i}B_{i}$ $= C_{i}(A_{i} \bigoplus B_{i}) + A_{i}B_{i}$

Addition: FA direct implementation

• Truth Table of FA:

	x y	Z	C S				
0	0	0	0 0				
0	0	1	0 1				
0	1	0	0 1				
0	1	1	10				
1	0	0	0 1				
1	0	1	10				
1	1	0	10				
1	1	1	1 1				

$$S = x'y'z + x'yz' + xy'z' + xyz$$

K-map of C

Addition: FA direct implementation

• The implementation for *S*

• The implementation for C

Binary adders/carry propagation

Four-bit adder: Delay $2m = 2 \times 4 = 8$

Carry Lookahead

Binary adders/carry Lookahead

- Note that G_i generates a carry when both the inputs A_i and B_i are 1 regardless of the value of C_i .
- G_i is called a carry generator.
- P_i decides whether a carry will propagate from stage *i* to stage *i* + 1. It is called a carry propagator.
- Note that P_i and G_i are generated from A_i and B_i in one gate delay.
- Now, let's consider the example of 4-bit adder.
- $C_0 =$ the input carry
- $C_1 = G_0 + P_0 C_0$
- $C_2 = G_1 + P_1C_1 = G_1 + P_1(G_0 + P_0C_0) = G_1 + P_1G_0 + P_1P_0C_0$
- $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$

Binary adders/carry Lookahead

carry lookahead generator:

Binary adders/carry Lookahead

carry lookahead generator:

Lecture 7: Subtraction:

• Adder/Subtractor:

- When M = 0, we get A+B.
- When M = 1, we get A-B.
- V=1 flags an overflow.

Lecture 7: Subtraction: Example

- Example: 8-bit adder.
- Numbers are from -127 to +127 (from 11111111 to 0111111).
- The result may fall out of range.
- Example: Adding +60 and +70 = 130 > 127

Lecture 7: BCD Adder

Adding two decimal digits and a carry, we get a number between 0 and 19.

Binary Sum						В	Decimal			
K	Z 8	Z 4	Z ₂	<i>Z</i> 1	с	S 8	S 4	S ₂	S 1	
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

Lecture 7: BCD Adder

 $S_8 S_4 S_2 S_1$.

- C = 1 whenever K = 1 or $Z_8 = 1$.
- C = 0 when $Z_8 = 1$ and both Z_4 and Z_2 are zero.

• So,

- $C = K + Z_8(Z_2 + Z_4) = K + Z_8Z_4 + Z_8Z_2$
- When C = 1, we need to add 6 (0110) to $Z_8Z_4Z_2Z_1$ to get

Lecture 7: Binary multiplication

$$C = 1 \text{ whenever } K = 1 \text{ or } Z_8 = 1.$$

$$B_1 \qquad B_0$$

$$\frac{A_1 \qquad A_0}{A_0 B_1 \qquad A_0 B_0} \longleftarrow \text{ multiplying } B_1 B_0 \text{ by } A_0$$

$$\text{multiplying } B_1 B_0 \text{ by } A_1 \longrightarrow A_1 B_1 \qquad A_1 B_0$$

$$R_3 \qquad P_2 \qquad P_1 \qquad P_0$$

• 2-by-2 multiplier:

Lecture 7: Binary multiplication

Example: 4-bit by 3-bit multiplier

Magnitude Comparator

- It compares two numbers $A = A_3A_2A_1A_0$ and $B = B_3B_2B_1B_0$ and decides whether A = B, A > B or A < B.
- A = B if and only if $A_3 = B_3$, $A_2 = B_2$, $A_1 = B_1$, $A_0 = B_0$.

•
$$A_3 = B_3$$
 if $X_3 = A_3B_3 + A'_3B'_3$.
• Similarly $X_i = A_iB_i + A'_iB'_i$, $i = 0, 1, 2, 3$ shows $A_i = B_i$.

- So: $(A = B) = X_3 X_2 X_1 X_0.$
- Case of: A > B: A > B
- If A_3 is equal to 1 and $B_3 = 0$. So, if $A_3B'_3 = 1$, then A > B.
- If $A_3 = B_3$, i.e., if $X_3 = 1$ and $A_2 = 1$ and $B_2 = 0$, i.e., if $X_3A_2B_2' = 1$.
- if $X_3 X_2 A_1 B_1' = 1$ or $X_3 X_2 X_1 A_0 B_0' = 1$. $(A > B) = A_3 B_3' + X_3 A_2 B_2' + X_3 X_2 A_1 B_1' + X_3 X_2 X_1 A_0 B_0'$

and

 $(A < B) = A'_{3}B_{3} + X_{3}A'_{2}B_{2} + X_{3}X_{2}A'_{1}B_{1} + X_{3}X_{2}X_{1}A'_{0}B_{0}$

Lecture 7: Magnitude Comparator

• 4-bit Magnitude Comparator:

Lecture 7: Knowledge Check

- **Question 1:** To add two 8-bit numbers, the number of Half-Adders needed is:
- a) 8, b) 15, c) 16, d) 17
 - Question 2: If the gate delay is 10 ns (nano seconds), what would be the delay in adding two 8 bit numbers using carry look ahead?
- a) 40 ns, b) 160 ns, c) 80 ns, d) 20 ns
- Question 3: