

COEN 212: DIGITAL SYSTEMS DESIGN I Lecture 8: Common Combinational Logic Circuits Decoders, Encoders, Multiplexers

Instructor: Dr. Reza Soleymani, Office: EV-5.125, Telephone: 848-2424 ext.: 4103.

Lecture 8: Objectives of this lecture

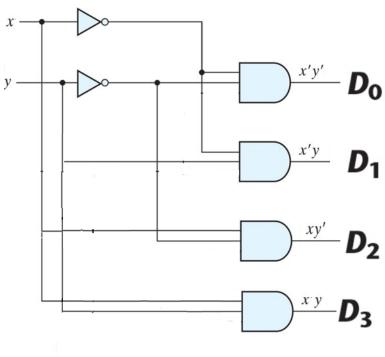
- In this lecture, we talk about:
 - Decoders.
 - Encoders.
 - Multiplexers.

Lecture 8: Reading for this lecture

 Digital Design by M. Morris R. Mano and Michael D. Ciletti, 6th Edition, Pearson, 2018:
 – Chapter 4 (4.9 to 4.11)

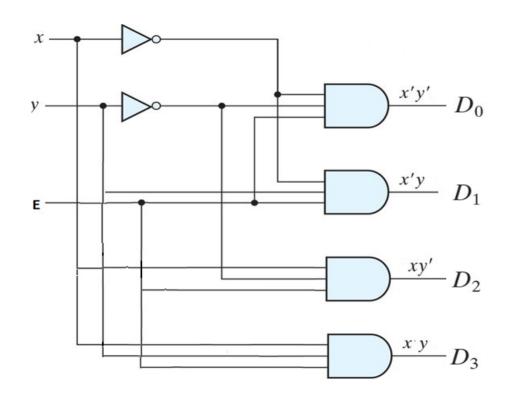
Lecture 8: Decoders:

A 2-bit (2x4) Decoder:



Decoders, Encoders, Multiplexers:

A 2-bit Decoder with ENABLE input:

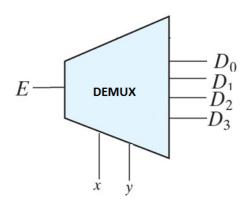


Decoders, Encoders, Multiplexers:

Truth Table of Decoder:

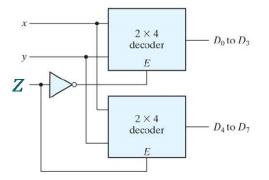
E x y	D_0	D_1 L	\mathcal{D}_2	<i>D</i> ₃
0 X X	0	0	0	0
100	1	0	0	0
101	0	1	0	0
1 1 0	0	0	1	0
1 1 1	0	0	0	1

x and y cause the enable to appear on pins D₀, D₁, D₂, D₃ This is what is termed a **demultiplexer**.



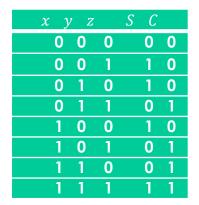
Decoders, Encoders, Multiplexers:

- **Expanding the decoders:** An n-bit decoder with can be implemented using two n 1-bit decoders.
- **Example:** Use two 2-input decoders to implement a 3-input decoder.



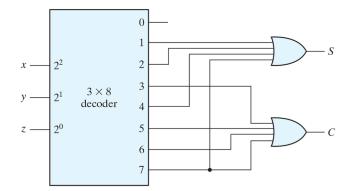
Combinational logic implementation using decoders:

- Combination logic implementation using decoders:
 - Outputs of a decoder represent the minterms of the input.
 - ORing these outputs we can implement any function.
- Example: Design a Full Adder.



$$S = \sum (1, 2, 4, 7)$$

C = $\sum (3, 5, 6, 7)$



Lecture 8: Encoders:

• Truth Table for an Octal Encoder:

1	D ₀	D_1	D_2	D_3	D_4	D_5	D_6	D ₇	x	y	Ζ
1	1	0	0	0	0	0	0	0	0	0	0
0)	1	0	0	0	0	0	0	0	0	1
0)	0	1	0	0	0	0	0	0	1	0
0)	0	0	1	0	0	0	0	0	1	1
0)	0	0	0	1	0	0	0	1	0	0
0)	0	0	0	0	1	0	0	1	0	1
0)	0	0	0	0	0	1	0	1	1	0
()	0	0	0	0	0	0	1	1	1	1

• Implementation:

$$z = D_1 + D_3 + D_5 + D_7$$

$$y = D_2 + D_3 + D_6 + D_7$$

$$x = D_4 + D_5 + D_6 + D_7$$

Lecture 8: Encoders:

- Everything is fine as long as one and only one input is high.
 - When the output is 000: is D_1 zero or one?
 - When the output is 011: is D_3 high or both D_3 and D_1 ?
 - Press 3 and 6 Simultaneously. Then $D_3 = D_6 = 1$ and z = y = x = 1. But, 111 represents D_7 !
- Solution: Including extra logic
 - indicating whether any of the inputs is on or not.
 - A priority logic selecting one of the inputs when more than one input is high.

Lecture 8: Encoder with priority Logic

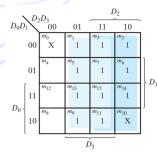
Example: a 4-input encoder:

D_0	D_1	D_2	D_3	x y V
0	0	0	0	ХХО
1	0	0	0	0 0 1
Х	1	0	0	0 1 1
Х	Х	1	0	1 0 1
Х	Х	Х	1	1 1 1

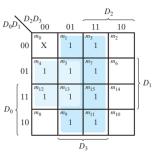
- Extra output $V = D_0 + D_1 + D_2 + D_3$.
- V = 0: no input. V = 1: input shown by (x, y).
- When two inputs are high, the one with larger index is selected.

Lecture 8: Encoder with priority Logic

K-map for X :

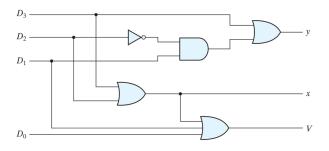


K-map for y:



• So: $x = D_2 + D_3$ and $y = D_3 + D_1D_2'$.

Implementation:

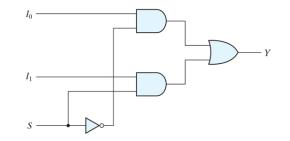


Lecture 8: Multiplexers

• Example: 2-bit MUX

 $I_0 \longrightarrow 0$ $I_1 \longrightarrow I$ $I_1 \longrightarrow S$

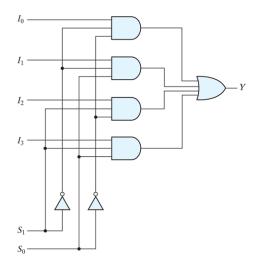
• Implementation:



Lecture 8: Multiplexers

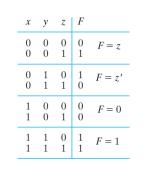
- Example: 4-bit MUX
- Need $\log_2^4 = 2$ select inputs:

• Implementation:

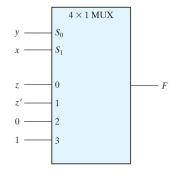


Boolean Function Design using MUX

- A Boolean function with n variables can be implemented using a multiplexer with 2^{n-1} inputs.
- It has n-1 select lines.
- Connect the first n-1 variables to the n-1 select inputs.
- The remaining variables, say z, will be used for data inputs. Depending on the function, the inputs will receive z, z', 1, or 0.
- Example: $F(x, y, z) = \sum (1, 2, 6, 7)$



Truth Table



Implementation

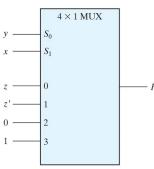
Boolean Function Design using MUX

- Example: Design $(F(A, B, C, D) = \sum (1,3,4,11,12,13,14,15)$
- $n = 4 \text{ so } 2^{n-1} = 2^{4-1} = 8$. We need an 8-to-1 MUX.

• Truth Table:

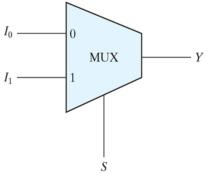
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x	у	z	F	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					F = z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$\begin{array}{c} 1 \\ 0 \end{array}$	F = z'
	_				F = 0
	-				F = 1

Implementatio



Lecture 8: Knowledge Check

• Question 1: In the circuit shown let $I_0 = 1$, $I_0 = 0$, and S = 1:



- The output will be?
- a) 0, b) 1,
- **Question 2:** To design a function with inputs A, B, C, D, E, F, we need a multiplexer with:
- a) 5 inputs, b) 8 inputs, c) 16 inputs, d) 4 inputs