

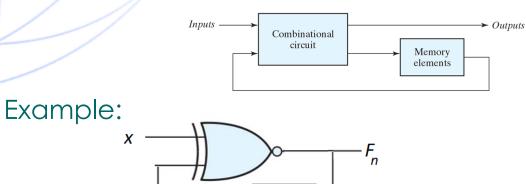
COEN 212: DIGITAL SYSTEMS DESIGN I Lecture 9: Sequential Circuits Latches and Flip-flops

Instructor: Dr. Reza Soleymani, Office: EV-5.125, Telephone: 848-2424 ext.: 4103.

Lecture 9: Objectives of this lecture

- In this lecture, we talk about:
 - Sequential Circuits.
 - Latches.
 - Flip-flops.

Lecture 9: Reading for this lecture



 Digital Design by M. Morris R. Mano and Michael D. Ciletti, 6th Edition, Pearson, 2018:
 – Chapter 5 (5.1 to 5.4)

Lecture 9: Sequential Circuits:

A typical Sequential Circuit:

Memory

elements

 $\overline{F_{n-1}}$

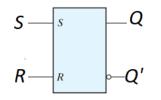
• State Table:

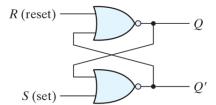
Present state	Next	state	Outpu	it (<i>F</i> ⁿ)
F^{n-1}	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1
0	0	1	0	1
1	1	0	1	0

Lecture 9: Sequential Circuits:

- There are two types of sequential circuits:
 - The synchronous circuits,
 - The asynchronous circuits.
- In the synchronous circuits:
 - state and also outputs change at discrete times dictated by a clock.
- In an asynchronous sequential circuit:
 - the output of each gate is defined based on its input and gates delay. So, the state and outputs can change at any time.
 - The problem with asynchronous circuits is the possibility of encountering instability due to feedback.
- In this course, we mainly consider Synchronous Sequential Circuits.

Lecture 9: Latches: SR-Latch




SR Latch:

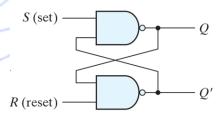
- Has S (Set) and R (Reset) inputs and Q and Q' outputs.
- Implemented using 2 NORs or 2 NANDs.

Symbol:

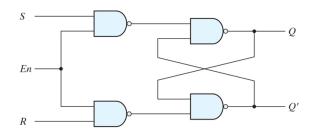
Implementation:

• Relationship between S, R, Q and Q'.

	Q'	Q	R	S
	0	1	0	1
(after $S = 1, R = 0$)	0	1	0	0
	1	0	1	0
(after $S = 0, R = 1$)	1	0	0	0
(forbidden state)	0	0	1	1


Lecture 9:

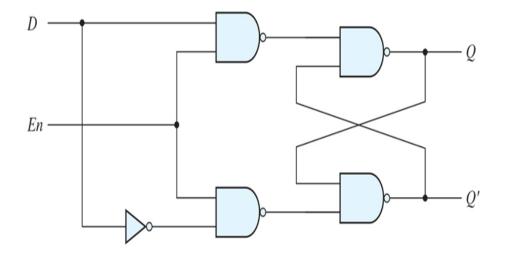
Latches: SR-Latch with NAND

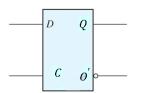

SR latch implementation using NAND gates:

- Implementation:

Operc	ation:	
S R	Q Q'	
1 0	0 1	
1 1	0 1	(after $S = 1, R = 0$)
0 1	1 0	
1 1	1 0	(after $S = 0, R = 1$)
0 0	1 1	forbidden inputs (00)

• A Control or Enable input can be added.



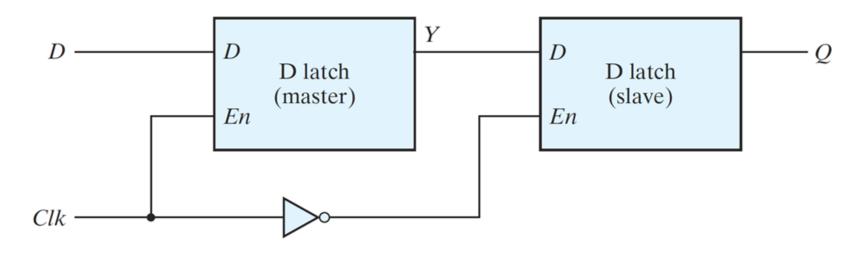

C	S	R	Next state
0	Х	Х	No change
1	0	0	No change
1	0	1	Q = 0, $Q' = 1$ (reset state)
1	1	0	Q = 1, $Q' = 0$ (set state)
1	1	1	Indeterminate

Lecture 9: Latches: D-Latch

D-Latch: avoids indeterminate state by making R = S'

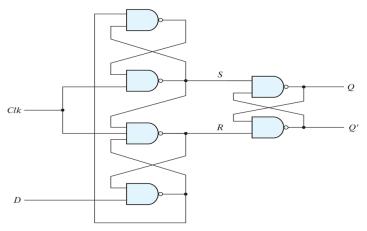
С	D	Next state	
0	Х	No change	
1	0	Q = 0, Q' = 1 (reset)	
1	1	Q = 1, Q' = 0 (set)	

Lecture 9: Flip-flops


- Output of a Latches depends on the input level.
- Input levels fluctuation may cause erroneous operation.
- Flip-flops are edge triggered. So only change with the clock.
- Some Flip-flops respond to the Rising Edge of clock:

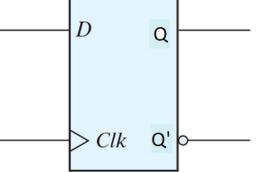
• while others change their state at the Falling Edge:

Lecture 9: Flip-flops

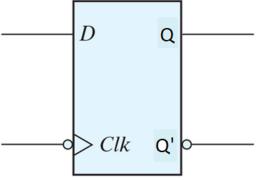

- There are two ways to implement edge-triggered flip-flops:
 - isolate the input from the output. The output change only after control (clock) signal has been removed.
 - make a flip-flop that only changes when level of its clock goes from 0 to 1 or from 1 to 0 and remains unchanged rest of the time.
- Implementing edge-triggered D flip-flop:

Lecture 9: D-Flip-flop

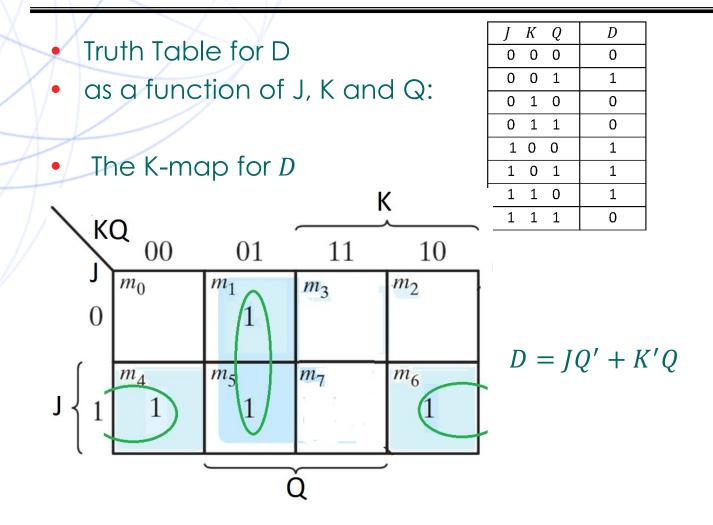
Implementing D flip-flop using SR-Latch:



- as long as clk=0, S = 1 and R = 1 and output is unchanged.
- When clk goes to 1:
 - if D = 0 makes R = 0 and Q' = 1 and Q = 0,
 - if D = 1 the output of the lower most NAND will be 0 and S = 0. Q = 1, Q' = 0.
 - Any further change in D while clk=1 will have no effect on the output.

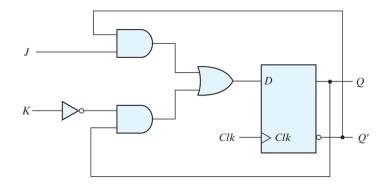

Lecture 9: D-Flip-flop

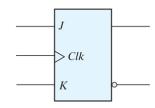
A rising (positive) edge triggered D-flip-flop is represented by the symbol:



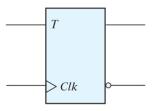
• A falling (negative) edge triggered D-flip-flop is represented by the symbol:

Lecture 9: JK-Flip-flop



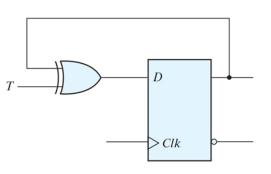

Lecture 9: JK-Flip-flop

The Circuit Diagram for the J-K FF is:

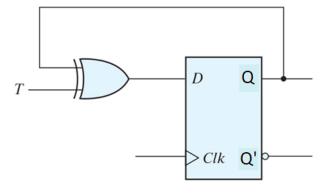

• and the symbol is:

Lecture 9: T-Flip-flop

• The Symbol for the T Flip-flop is:


• The T-FF changes its state (toggles) when T = 1:

T Q	D	
0 0	0	no change
0 1	1	no change
1 0	1	toggle
1 1	0	toggle


Lecture 9: T-Flip-flop

- For implementation using D-FF, we have:
 - $D = T \oplus Q.$
- and the circuit diagram is:

 T-FF could also be implemented using JK-FF

Lecture 9:

Characteristic tables and equations:

- Characteristic tables (or equations) describe the operation of sequential circuits:
- For a JK flip-flop the characteristic table is:

J K		Q(t + 1)	
0 0)	Q(t)	no change
0 1	-	0	reset
1 0)	1	set
1 1	-	Q'(t)	invert

• And the Characteristic Function is:

Q(t+1) = JQ'(t) + K'Q(t)

where Q(t) and Q(t+1) are the state of the flip-flop, before and after the application of the clock signal.

Lecture 9:

Characteristic tables and equations:

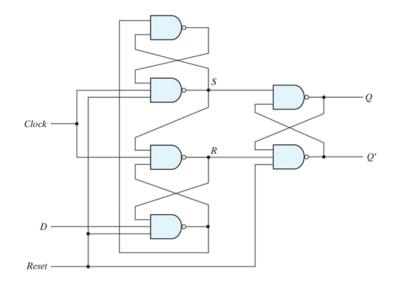
• For D Flip-flop, we have:

D	Q(t + 1)
0	0
1	1

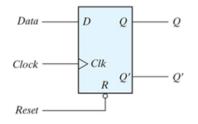
• So, the characteristic equation is:

Q(t+1)=D

• For a T flip-flop the characteristic table is:


Т	Q(t+1)	
0	Q(t)	no change
1	Q'(t)	toggle (invert)

• And the Characteristic Function is: $Q(t+1) = T \bigoplus Q(t) = T'Q(t) + TQ'(t)$


Lecture 9: Flip-Flop with Direct Inputs:

• A flip-flop with a reset state:

• The symbol for D-FF with reset:

Lecture 9: Knowledge Check

Question 1: In a JK FF Q=1, the input J=1, K=1 results in:
 a) Q=1, b) Q=0, c) Q'=0, d) undefined state

Question 1: In a T FF Q=1, applying a four bit stream 1010 results in:
a) Q=1, b) Q=0, c) Q'=0, d) Q=10