Course: Digital Systems Design		Course Number: COEN312/1	Section: CC
Examination: Midterm	Date:	Time:	\# of pages: 1
	July 20, 2008	1 hour 10 min.	
Instructor:			
Dr. M.R. Soleymani			
Books and Material: Only one crib sheet allowed, no calculator allowed.			
Special Instructions: Try all questions.			

1) Using Boolean Algebra minimize:

$$
F=\left(x+y^{\prime} z^{\prime}\right)\left(x^{\prime}+y z\right)\left(x+y^{\prime}\right)(x+z) \quad \text { (4 Marks) }
$$

2) For the following circuit,
a. Draw the truth table (2 Marks).
b. Simplify the logic using K-map (3 Marks).

3) Simplify the function F with the don't care condition d :

$$
\begin{gather*}
F(w, x, y, z)=\sum(0,2,5,7,8,10,13,15) \\
d(w, x, y, z)=\sum(1,6,14) . \tag{4Marks}
\end{gather*}
$$

4) Design the function $F(w, x, y, z)=\sum(1,3,4,11,12,14,15)$ using an 8×1 multiplexer. (4 Marks).
5) Design (with minimum number of gates) a circuit with four inputs A, B, C and D and an output F such that F is equal to 1 if the number represented by $A B C D$ is divisible by 4. (4 Marks).
6) Implement:

$$
F=(x+y)\left(x^{\prime}+z\right)\left(y+z^{\prime}\right)
$$

a) with OR, AND and NOT gates (2 Marks).
b) With NOR gates only. The inputs are only available in noninverted form (2 Marks).

