Course:		Number:	Section:
Digital Systems Design	•	COEN312/4	W
Examination: Midterm	Date:	Time:	# of pages:
	Feb. 14, 2007	1 Hr. 10 min.	1
Instructor:			
Dr. M.R. Soleymani			
Books and Materials: No m	aterial, no calculator a	llowed	
Special Instructions: Try all	questions.		

1) Using Boolean Algebra minimize:

$$F = x'yz + xy + xyz'$$

(4 Marks).

2) Implement the following function:

$$F = AB + BC + B'C'$$

- a) Using AND, OR and NOT gates (2 marks).
- b) Using NAND gates only (3 Marks).
- 3) Give the minimal sum of products form for:

$$F(A,B,C,D) = \sum (2,3,6,7,8,9,12,13)$$
 (4 Marks)

4) Simplify the following function ${\cal F}$, with the don't-care conditions ${\it d}$:

$$F(x, y, z) = \sum (2,3,4,5,6)$$

$$d(x, y, z) = \sum (0,1,7)$$
 (3 Marks).

- 5) Design a combinational circuit with three inputs x, y and z and one output such that the output is 1 when the binary value of the inputs is greater than 3 and the output is zero otherwise (4 Marks).
- 6) Implement an XOR gate using four (4) NAND gates only (5Marks). Note: If you use more than 4 NAND gates you get 3 marks. However, you should not use any gates other than NAND.