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Smart Mode Selection Using Online Reinforcement
Learning for VR Broadband Broadcasting
in D2D Assisted 5G HetNets

Lei Feng

Abstract—As an emerging broadband service pattern in the
5G era, VR broadcasting needs a considerable amount of band-
width and strict quality of service (QoS) control. The traditional
eMBMS or enTV transmission mode in HetNets consisting of
macro cells and small cells cannot bring about a good trade-
off between broadband performance and resource utilization for
VR broadcasting service. D2D multicasting applied to VR broad-
casting can improve the performance of edge users and resource
utilization. Motivated by the rapid development of AI techniques,
this paper proposes a novel hybrid transmission mode selection
based on online reinforcement learning to address this problem.
Each VR broadband user can be associated by one of the three
modes: macrocell broadcasting, mmWave small cell unicasting
and D2D multicasting. This paper first models this intelligent
mode decision process as a problem to pursue the optimal system
throughput. Then, an online machine learning-based method is
proposed to solve this problem, which consists of a fast D2D
clustering module based on unsupervised learning and a smart
mode selection module based on reinforcement learning. The sim-
ulation results verify that the WoLF-PHC and Nash Q-learning
perform better than other algorithms in large-scale scenarios
and small-scale scenarios, respectively. The proposed intelligent
transmission mode selection can also achieve larger VR through-
put than traditional broadcasting strategies with a good balance
between broadband performance and resource utilization.

Index Terms—5G broadcasting, VR broadband service,
D2D multicasting, reinforcement learning, transmission mode
selection.

I. INTRODUCTION

S THE rapid development of virtual reality (VR), it will
be widely used in various fields, such as education, health
care, security and industry. And it also will become the most
popular multimedia service. In the 5G era, VR is an important
broadcasting service pattern. In contrast to other broadcasting
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services, VR has a greater need for broadband and its QoS
control is also strict, owing to the demand to simultaneously
support very large capacity, low latency and ultra-reliability.
The network throughput requirement may be approximately
hundreds of megabits per second by advanced compression
technology [1]. However, current multimedia communication
technologies are difficult to meet the above-mentioned strict
virtual reality service quality requirements.

Work is ongoing in 3GPP Rel-16 to define an LTE-based
solution, known as the evolved multimedia broadcast multicast
service (eMBMS) and enhanced TV (enTV), suitable for ter-
restrial broadcast [2]. The eMBMS is typically combined with
single-frequency network technology in which different cellu-
lar stations broadcast simultaneously over the same channel. In
this way, the same frequency resources can be fully utilized to
simultaneously deliver content to multiple requesters, thereby
effectively utilizing the network resource [3]. However, the
function of eMBMS cannot solve all VR broadcast use cases.
The reason is that broadcasting service delay tolerance limit
requires that eMBMS can only take its advantages in dense
networks.

Although the LTE-A network has indisputable advan-
tages, providing group-oriented services poses a challenge
to eMBMS design in LTE-A. It is particularly significant
when delivering video content with high bitrate requirements,
such as VR. In our view, 5G device to device (D2D) com-
munications are beneficial for multicast delivery schemes in
eMBMS networks. When communicating in the local range,
the efficiency of using a D2D link is better than that of a reg-
ular pass through a base station (BS), which helps alleviate
network congestion [4]. In addition, it can reduce base station
load, expand base station coverage, and share content through
multicast [5]. D2D communication in VR further facilitates
faster communication and poses less pressure on the network
resources.

Technical scene requirements of VR, such as seamless wide-
area coverage and low-power large-scale connectivity, pose
challenges for 5G. However, the capabilities of traditional sin-
gle layer cellular network architectures are inadequate [6]. In
order to meet the increasing demand for higher data rates in the
5G VR era, while considering that the efficiency of wireless
links is approaching its basic limits, 5G HetNet is proposed
as a new type of network, which is a multi-layer network and
contains different communication technologies. It consists of
nodes with different transmission power and coverage. The
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multitier HetNet is composed of macro cellular and low-power
networks such as mmWave small cellular and D2D clusters in
its coverage area [7]. Multitier HetNets can greatly improve
the overall throughput of HetNet by offloading macro BSs
(MBSs) to low-power BSs [8].

Howeyver, the transmission mode selection of VR broadcast-
ing in 5G HetNet still faces enormous challenges [9]. One
of the challenges is that the problem is complex and diffi-
cult to solve with no prior knowledge since the user state
always varies randomly. In this article, VR broadcast users
switch among three modes: macrocell broadcasting, mmWave
small cell unicasting and D2D multicasting. Whenever the
number of users in the system changes or the network sta-
tus varies, the user transmission mode will also change.
Traditional network transmission mode selection methods such
as Analytic Hierarchy Process (AHP) algorithm and the game
theory algorithm are not suitable for complex and changeable
environments, and cannot make timely decisions based on real-
time changes in the network environment. In addition, in such
a real-time changing environment, it is difficult to determine
an accurate system state transition model and calculate the
optimal transmission mode strategy through a dynamic pro-
gramming algorithm. Reinforcement learning (RL) has became
a popular research method in several fields to find the optimal
strategy [10]. And online reinforcement learning does not need
to know the user’s behavior in advance, and can quickly find
the user’s optimal transmission strategy in a real-time changing
environment [11]. This is why we choose online reinforcement
learning to solve this optimization problem.

In this paper, we propose an intelligent mode selection strat-
egy in D2D assisted 5G HetNet to improve the performance
of VR broadcasting. Firstly, we do D2D clustering by the
fast D2D clustering algorithm based on unsupervised learning.
Secondly, smart mode selection based on reinforcement learn-
ing is used to find the optimal transmission strategy. Finally,
we evaluate the simulation results. The main contributions and
content are summarized as follows:

1) A novel hybrid mode selection scheme is proposed for
VR broadcasting in 5G HetNet. To the best of our knowledge,
it is the first time that D2D multicasting is utilized and ana-
lyzed in VR broadband broadcasting. In this D2D assisted 5G
HetNet, the VR users can be served by three modes: marco
cell broadcasting, mmWave small cell unicasting and D2D
multicasting. D2D multicasting reuses the uplink resource of
mmWave small cells through controlling the interference. This
proposed scheme improves the performance of edge users and
resource utilization since the coverage range of marco cell
eMBMS is limited by the edge worst channel-condition users’
SINR and the unicasting by small cell consumes considerable
resources for broadband service.

2) To select the transmission mode for VR broadband
service intelligently and dynamically, we use online reinforce-
ment learning to obtain the optimal decisions among the above
three modes for each user. Firstly, the theoretic framework of
multi-agent learning is given to model this smart mode selec-
tion problem under general-sum stochastic games, whose aim
is to maximize the total throughput for VR broadband service.
We design a reasonable reward function and Q-function for

the optimal VR transmission rate and optimize the VR qual-
ity over HetNet. Then, two RL polices, Nash-Q-learning and
Wolf-PHC are discussed with a consideration of the network
scale. To meet the low latency requirement of online learning,
WOoLF-PHC algorithm is selected in large-scale scenario based
on its low complexity and computational space requirement for
a large number of agents.

3) A reasonable performance evaluation is given to com-
pare the proposed strategy with other ones, such as traditional
eMBMS and normal hybrid transmission by small and macro
cell with heuristic Q-learning-based RL. We compare the
performance in several aspects, including convergency and
VR broadcasting throughput gain evaluation. In the large-scale
network scenario, we adopt the WoLF-PHC scheme and com-
pare it with random pick scheme and simple greedy scheme in
performance. While in the small-scale one, we use the Nash
Q-learning scheme and compare it with other algorithms such
as Deep Q-learning, random pick and best policy. Simulation
results indicate that the proposed scheme with WoLF-PHC
scheme and Nash-Q-learning perform better in large-scale
scenarios and small-scale scenarios, respectively.

The remainder of this paper is organized as follows. A
review of the related work is presented in Section II. In
Section III, we introduce the system architecture and for-
mulate system optimization problems. Section IV presents
D2D clustering algorithm and an online reinforcement learning
algorithm to solve this problem. Section V shows the analy-
sis of the simulation results, and Section VI presents some
conclusions.

II. RELATED WORK

Several works have been performed on 5G broadcasting.
It is an opportunity for broadcasting and multicasting with a
dramatic increase in multimedia data traffic. First, the authors
in reference [12] analyzed the impatient behavior of broad-
cast users and proposed a scheduling scheme to guarantee
eMBMS QoS in LTE environment. Reference [13] proposed
a scheme of using cut-off value from the perspective of mod-
ulation and coding, which improved the resource efficiency
in 5G broadcast network. An emerging hybrid transmission
model for sharing broadcast, multicast, and unicast resource
in 5G NR was proposed in reference [14], and compared
with eMBMS in 4G LTE, 5G NR provided more possi-
bilities for eMBMS. Reference [7] described a broadband
broadcasting system based on uhf band multiplexing. This
system has certain advantages in transmission performance,
anti-interference and energy consumption, which can satisfy
the demands of future 5G network development. The work
in reference [15] proposed a scheme to improve the resource
efficiency of broadcast multicast service by utilizing the redun-
dant channel of transmitting base station in 5G NR. In the
future, the same content services will be provided to a large
number of users with VR video demands through wireless
networks. The combination of VR and broadcasting can be
an effective transmission scheme. VR broadcasting in 5G
HetNet can improve the quality of service, and some schol-
ars have conducted relevant studies. In reference [16], the
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authors studied the communication resource management of
VR services. Reference [17] proposed a specified color depth
packing method for providing 3D video and VR broadcast
services. The research on VR broadcasting in 5G network has
just started and VR broadcasting is a field worth further study.
It can be considered to combine with other key technologies
of 5G to create more possibilities.

As an auxiliary communication technology, D2D can pro-
mote spectrum resource utilization and realize the whole
system performance enhancement in 5G multimedia network.
Reference [18] studied the resource allocation of D2D com-
munication in e-band cellular network, and the proposed
resource allocation scheme realized the improvement of
system throughput, and considered the interference brought by
D2D reusable resource blocks. A D2D auxiliary cooperation
framework under 5G heterogeneous network was proposed
in [19], and the corresponding spectrum access scheme was
studied emphatically. The authors in [20] designed a pre-cache
algorithm to realize the D2D assisted distribution of VR video
and improve the user experience. Reference [21] proposed a
resource allocation algorithm based on D2D caching mecha-
nism which achieves higher energy and spectrum efficiency
in multimedia service communication system. D2D serves
as the edge computing center for relay to unload traffic to
light load. Based on this mode, a joint relay selection scheme
was designed in [22]. Reference [23] analyzed how the qual-
ity of experience (QoE) and backhaul traffic are affected
by the combination of D2D and edge computing in video
streaming. In addition, the application of mmWave in broad-
casting is also emerging. In order to improve the concurrent
performance of mmWave links, reference [24] proposed a
cluster-based broadcast scheduling scheme, which improved
the average packet transfer rate and throughput. A V2V
communication broadcast scheme based on mmWave was
proposed in [25] to ensure that each vehicle can obtain sen-
sor data of all other vehicles and reduce broadcast delay.
In [26], matched filtering (MF) and partial filtering (PMF)
were proposed for the transmission of secret information in
dual-receiving millimeter-wave system, and their effectiveness
is verified. A multicast scheduling scheme of mmWave small
cell called CONMD2D was proposed in [27] to optimize
network performance by using concurrent transmission and
D2D communication. Summarizing the above work, we can
find that broadcasting, VR, D2D communication, mmWave
and other technologies have made some progress in their
respective directions. However, in the context of 5G het-
erogeneous network, how to combine these technologies to
provide better VR video broadcasting services still needs fur-
ther research. Different from existing works, we focus on VR
broadband broadcasting in D2D assisted 5G HetNet, in which
transmission modes like Macro-cell eMBMS, D2D multicast-
ing and mmWave small cell unicasting are jointly considered.
Through the above three transmission modes, the coverage of
Marco base station will be expanded and the channel quality
of its edge users will be improved.

Machine learning algorithm as a solution has been applied
widely in resource allocation, resource scheduling and decision
control of wireless networks. In reference [28] and [29], deep
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reinforcement learning algorithm was designed to allocate
computing resources reasonably and task migration in mobile
edge computing network, ensuring the low latency of commu-
nication. In reference [30], the authors used role-critics-based
reinforcement learning algorithm to make the most reasonable
scheduling of downlink broadcast resources. The algorithm
not only promoted the system performance, but also guaran-
teed the fairness between users. Similarly, machine learning
algorithm is also applicable to 5G wireless self-organizing
network. A scheme based on machine learning to determine
the optimal routing path for the terminal was proposed in [31]
in terms of distance and capacity. The VR broadcast wire-
less network scenarios are complex, and it is unrealistic to
determine accurate environmental information in real time.
Reinforcement learning method works well on this type of
problem because it does not require a specific model and can
learn how to improve by interacting with the environment.
In contrast to existing works, we focus on VR broadband
broadcasting in D2D-assisted SG HetNet, in which transmis-
sion modes such as macro cell eMBMS, D2D multicasting and
mmWave small cell unicasting are jointly considered. Through
the above three transmission modes, the coverage of the macro
base station is expanded, and the channel quality of its edge
users improves. In addition, we use reinforcement learning
to determine which transmission mode VR users choose to
achieve the maximum improvement of system performance.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section we describe the proposed model in three
parts, the first part shows the D2D assisted 5G HetNet system
model details. The second part is the specific expansion of
the user association principle. The last part analyzes the
optimal system throughput problem based on transmission
mode selection.

A. System Model

A VR broadband broadcast transmission system is consid-
ered in a 5G HetNet. The whole HetNet consists of two tiers:
the first tier is represented by the macro cell, and the second
tier includes D2D clusters and mmWave small cells, as shown
in Fig. 1. We assume that the HetNet works on discrete time
slots with constant duration. Let N = {1, 2, ..., N} represent
the VR UEs in the whole system. There is one macro cell, k
D2D clusters and k, mmWave small cells. We chose M = {1},
D={1,2,...,k;}, L ={1,2,...,k>} to designate the sets
of macro cell, D2D clusters and mmWave small cells in the
system. The macro cell provides eMBMS, and its coverage
range is limited by the edge worst-channel-condition users’
SINR. D2D multicasting and mmWave small cell unicasting
implement the VR broadcasting coverage extension. The UE
may simultaneously be in multiple network coverage areas.
However, it dose not receive all the VR signals from each
network. The UE tunes into the corresponding channel for data
reception when the UE establishes an association relationship
with a specific network. The transition of the VR network state
over time slots is described by S(f) which is defined as the
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Fig. 1. System model of D2D assisted 5G HetNet.

association. Thus, the network state is represented as follows:

S(1) = {s1(0), s2(0), ..., sn(D)}. (D

Each element in formula (1) represents the association rela-
tionship between the user and the three network sets. In the
time slot ¢, we define A(¥) = {a;(¢),ax(?), ...,an(?)} to rep-
resent the user selection action in the transmission mode. In
the time slot ¢, the system determines A(f) according to state
S(t) and then enters the next state S(z + 1).

B. User Association Principle

1) Macro Cell and mmWave Small Cell: Macro cells pro-
vide eMBMS to UEs in coverage, and UEs associated with
macro cells simultaneously receive the same VR broadcast
content. Multicast/broadcast services are multi-user services
and cannot provide user-specific adaptive parameter configu-
ration, i.e., link adaptive transmission cannot be provided for
a single user. Therefore, the coverage of eMBMS, or the data
transmission rate that eMBMS can provide depends on the UE
with the worst link quality. Among the users who establish an
association relationship with the macro cell m, the SINR of
the user with the worst link quality is expressed as

Gn,mP m

5 = i ) 2
Yu(s, a) min —> )

where Gy, denotes the channel gain from the macro BS to
the UE n, P,, is the macro BS m broadcast power. Because
broadcast channels are only occupied by macro stations, VR
users accessing the channels are ideally only affected by addi-
tive white Gaussian noise o in the environment. Further, let
B,, denote the broadcast channel bandwidth of the macro cell
m, and the data reception rate of each VR UE in the macro
cell m is evaluated as

R, . (s,a) = Bp 10g2(1 + Vs, a)). 3)

If the user with inferior channel conditions is also in the
coverage range of one or more mmWave cells, the user can
consider establishing an association relationship with the near-
est mmWave cell, and the mmWave cell base station can
provide VR video content to the user through broadband

mmWave unicast, which expands the coverage of the macro
cell VR broadcast. The SINR of users who choose to access
the mmWave small cell unicast network can be calculated as
follows:

G, P

y ,[(Sﬂ a) = 3
" > jer)1GnjPi+ o

“)

where G, ;, G, ; is the channel gains from the small cell BS
[ and other small cell BSs j to the UE n. P;, P; separately
represents the small cell BS [ and other small cell BSs j
transmission power. The interference consists of two parts:
interference from other mmWave small cell unicast networks
and Gaussian white noise interference. The achievable recep-
tion rate of VR users in the mmWave small cell / can be
expressed as

R, (s, a) = Bilogy (1 + y,,(s. @), Q)

where B; denotes the transmission bandwidth of the mmWave
small cell [.

2) D2D Cluster: The SINR of the user who chooses to
access the D2D cluster multicast network can be described as,

Gy.aPy

G, P ’ ©
iep/d On,ifi + 0

n (s,a) =
}”dsa Z

where Gy 4, G,,; are the channel gains of the D2D cluster
header to the users. P; and P;, respectively, represent the
transmission power of cluster head d and another D2D cluster
head i. Broadband broadcasting can be provided by underlay-
ing all the uplink spectrum resources in the mmWave small
cell because the beamforming in massive MIMO can control
some interferences. The interference to a D2D cluster mainly
comes from other clusters because all the clusters reuse the
same uplink resources of the mmWave small cells. We use B,
to describe the D2D clusters’ multicast channel bandwidth:
therefore, the data reception rate of each VR UE D2D cluster
d is evaluated as follows:

Ry (s, a) = Bglogy(1 4+, 4(s, @)). (7)

As a result, the optimal power of D2D headers needs to be
calculated because the performance of an uplink in a mmWave
small cell cannot degrade much. The main point is to keep the
D2D communication from causing exceeding interference. To
solve this problem in D2D multicasting user association, the
Stackelberg gaming method is introduced as follows:

The mmWave BS is the leader, and the followers are
interfering D2D clusters because the former is dominant dur-
ing the game process. To address interference, the price is
set on the received interference, and interference can be coor-
dinated by adjusting the price. The first target is to use the
advantage of the mmWave BS most efficiently. Then, D2D
pairs compete to maximize their benefits through a non-
cooperative game that is based on pricing. The leader and
followers are designed to collect the max benefit for them-
selves owing to their selfishness. By charging followers for
interference, the leader gains a benefit. In addition, the leader
should limit the interference to a tolerable range because there
is a requirement of mmWave small cell users minimum uplink
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rate RY, . Mathematically, the maximization for a leader’s
utility function can be described as problem P1:

P1 : max Uj(c, Py)

s.t. Ul(c,Pg) =c¢ ZPdGl,d
deD
RY >RY (8)

n,l = *min>

where ¢ represents the unit interference power pricing factor
of, G; 4 denotes the channel gain between the BS in mmWave
small cell [ and the D2D cluster d, RZ ; is the user uplink rate
in the mmWave small cell /. According to the price imposed
by the leader, each follower regulates its transmission power
to pursue the utility value maximization. To fully assess utility,
we must consider not only the benefits that followers gain from
communication but also the costs of interference to the leader.
The optimization problem for each follower is described by
P2:

P2 : max Ug(c, Py)
s.t. Ug(e, Pg) = Ry a(s, a) — cPyGrq
0<P;<P).. 9)

where PP = represents the maximum transmission power of
D2D cluster header and the utility function Uy(c, Pg) of D2D
cluster n as a follower consists of two parts: the cluster broad-
casting data rate R, 4(s, a) in (10) and the expense paid to the

mmWave small cell BS due to interference.

Ryq(s,a) = Bylogy(1 + y, 4(s. @)). (10)

Higher transmission power increases the broadcast data
rate and the mmBS interference, which increases the cost.
Therefore, for the follower, the received data rate and com-
munication cost are considered comprehensively, and the
best compromise is achieved through appropriate transmission
power planning to maximize the utility value. From above,
in the process of the game, the benefits of mmWave small
cell and D2D clusters are considered, not only unilateral ben-
efit but also to eventually obtain a better benefit balance. The
Stackelberg equilibrium (SE) is a steady result, and there is
no motivation for any participant to diverge. The SE in this
pattern can be expressed as follows:

U](C*,PZ;) > Ud(c, PZ})

Uy(c*, P) > Uq(c*, Py), (11)

The inverse induction can solve this type of Stackelberg
game. Assuming c¢ is known, the ultimate result of fol-
lowers via a non-cooperative game is a Nash equilibrium
(NE). Theorem 1 is proposed and proven with regard to the
followers’ game.

Theorem 1: The followers in P2 have a unique NE, and the
optimal transmission power P}, in the NE follows:

_ 1 > ien/aPiGni+1In
" In2-c- G q G4 ’

Proof: According to game theory, if the pure policy space
of each participant in Euclidean space is a nonempty com-
pact convex set and the utility function is consecutive, then

Py

12)
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there must be an NE in an n-person policy game. In the
HetNet introduced in this paper, each D2D cluster transmission
power satisfies the maximum transmission power constraint
0 <Py < Pﬁax. Clearly, the policy space is a compactly
convex nonempty set. The continuity of the utility function is
satisfied. In the game policy space of all followers, there must
be an NE policy.

First, we solve the second derivative of the objective func-
tion Uy(c, Pg) and find that the second derivative is constant
negative. Then, we can conclude that the objective utility
function is strictly concave. A unique maximum exists in
a bounded closed convex set [0, Pﬁax]. Hence, the NE, as
described by the theorem exists and is unique. The first-order
condition is used to obtain the optimal reaction function, as
shown in the formula (12). [ |

Then, the convergence of (12) is tested using Banach the
contraction theorem. Substituting (12) into P1, we can also
obtain the optimal price factor ¢*. From above, we can use an
easy iterative adjustment scheme to find the final converged
optimal solution P}

C. Problem Formulation

In different transmission modes, VR users have different
signal receiving rates, which affects the overall throughput of
the system. Therefore, the system should select the appropriate
transmission mode for the user. Specifically, the user chooses
an action a(f) and enters the next state s(t + 1) according to
the entire system state in the time slot ¢. In this section, we
formulate the total throughput of the VR broadcast system in
the above 5G heterogeneous network as follows:

N
Roun(s, a) = Z[ D Rum(s,a)+ ) Ruals, a)

n=1 UmeM deD

+ ) Ruus, a)}.

leLL

13)

The total broadcast throughput of the system consists
of three parts: macro cell eMBMS, D2D multicasting and
mmWave small cell unicasting. The problem in this paper is
to solve the overall maximum throughput of the VR broadcast
system by employing an optimal transmission mode selection
strategy. The formula is as follows:

max Ry, (7 (s, a))
mwell

SEYum Yud yn,l(sv a) = Vmin
Pm S Pm,max
Py < Py max
P; < Piinaxs (14)

where .., represents the minimum SNR requirement of the
VR users’ QoS. The transmission power of the macro BS,
the D2D cluster head, and the mmWave small cell BS cannot
exceed the maximum transmission power limit.
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IV. TRANSMISSION MODE SELECTION USING ONLINE
REINFORCEMENT LEARNING

This section describes the process of achieving overall max-
imum throughput through the proposed online reinforcement
learning method. We divide whole process into two parts, D2D
clustering is the first part, the second is the transmission mode
selection via online reinforcement learning.

A. D2D Clustering

This section describes the clustering process of D2D by
using the rapid clustering method based on speedy search and
discovery of density peaks. First, we need to select the D2D
cluster centre and then classify the remaining D2D devices
according to the D2D cluster centre.

Consider the set of D2D waiting to cluster D = {d,-}lD: 10
lij = |ld; — d;||, represents the distance between VR UEs d;
and d;. For any point d; in D, p; and §; can be defined to
describe the characteristics of the point. Finally, the prelimi-
nary clustering results are divided into D2D-cluster cores and
D2D-cluster halos.

Definition 1: Local Density p;.

N2
pizze_(%),

J#

15)

where [; j represents the Euclidean distance between VR UEs

d; and d;, and . > O represents the cutoff distance.
Definition 2: Minimum Distance ;.

8/{,- — minl(/,j<i{lki,xj}» 12 2, (16)

max;>» (SKj , i=1,

where {/ci}f): | denote a descending subscript of {,oi}lD: > 1.e.,
Py = Py = 2 Prp-

To ensure that the different D2D clusters do not overlap,
the D2D cluster centres should be as far apart as possible.
Therefore, we believe that the D2D-cluster centre has a rel-
atively larger density and is surrounded by lower density
neighbours. In addition, the D2D-cluster centre should be far
from other points with higher density.

According to (16), when d; has the highest local density, §;
represents the maximum distance between other VR UEs and
d;, otherwise §; represents the minimum distance between d;
and the D2D devices whose local density is greater than d;.
The local density p; and minimum distance §; are simultane-
ously maximized to ensure that d; is selected as a D2D-cluster
centre. Note that §; is much larger than the typical nearest
neighbour distance merely for points that are local or global
maximum in the density.

To automatically select the D2D-cluster centre, considering
the local density p value and the minimum distance § value, we
definite a target y; for determining the number of D2D-cluster
centres.
i=1,2,...,D,

Vi = pi- b, (17

A

where 0 represents the z-score normalization of p and § is
similar.

Obviously, the larger y;, the more likely d; is the D2D-
cluster centrum. Thus, we only need to sort {yi}iD: | in descend-
ing order and then select several points from the beginning as
the D2D-cluster centre.

Calculate the mean value p and the variance o2 of y;
according to the (18).

_ ZiD:1 Vi

0_2 _ ZiDzl(Vi - M)Z

= , = 18
D D (18)
Then, for each y;, their respective probability densities are

calculated according to the (19).

N i’
Pl = V2ro? exp( 202 )

Finally, if P(y;) < € and y; > u, then the point n; is con-
sidered to be the D2D-cluster centre, where € is a very small
positive integer.

To distinguish outliers and noises, we introduce the concept
of local density within clusters to divide the D2D-cluster core
and the D2D-cluster halo from the preliminary D2D-cluster.

19)

D

0i = Z 1(le = i),

J:%i=@;

(20)

where /(o) define an indicator function. g; indicates the num-
ber of points in the same cluster, which is located less than
l. from point i. If g; is less than a fixed constant, then d; is
considered as an outlier.

The pseudo-code for the D2D clustering strategy is shown
in Algorithm 1.

B. Online Reinforcement Learning

In the reinforcement learning model, each user is actually
an intelligent agent taking actions based on state and reward
in time slot ¢. After taking actions according to policy, system
moves to time slot 7+ 1 and user changes its state. Our model
is listed as below.

State: The whole VR network state set is defined
in (1), because each user in the VR network takes strategy
independently.

Action: The whole VR user action set is defined as A(t) =
{ai(®),ax(®), ...,an(t)} in time slot t, where a; is the action
referring to state.

Policy: The strategy selection probability of the user i in
the time slot t is defined as m;(f). The policy set 7 (f) =
w1 (t), ..., nn(f). The probability policy is used to adopt
actions at the start of each iteration. The transition function is
defined on the basis of the strategy selection probability given
as follows:

P(s,s',a) = P(s¢c+ 1) =5|s(t) =s,a() =a). (21)

Reward: The reward function is interrelated to the state and
action of all the VR users in the network and is defined in (13).
Furthermore, we define r(s’, a’) as the Ry, (s, a) of the user
i in the time slot t.
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Algorithm 1: Improved Fast Search and Density Peaks
Identification Algorithm

Input: Given the parameter ¢ € (0, 1) used to determine
the cutoff distance [., constant  and the
coordinates of all D2D devices.

Output: The serial number of D2D-cluster which point

belongs to.

1 Calculate the distance /;j and let [;; = [;;,i < j.

2 Sort the distance set {/; ;} in ascending order to obtain the
sequence [} <l <.-- <y, M = M. Calculate the
cutoff distance I. = I|p.).

3 Calculate { ,0,-}?: | from (15) and generate its descending
order subscript {fci}iD= 1

4fori<2:Ddo

5 5Ki < ma‘x{l,',j}.

i<j
6 forj<1:i—1do
7 if Iy, «; < Oy, then
8 Sk; < i i
9 Vi < Kj.

10 &, < max{d,}.
jz2

11 Select the D2D-cluster centre {@}}g:] and set f < 1.

12 fori < 1:Ddo
13| if x5 € {¢y}7_, then

14 v < f.
15 f<f+1
16 else

17 | o< -1

18 fori < 1:Ddo
19 Calculate p; based on (20).
20 if ¢; = —1 then

21 if o; >= n then
z | o= g,

23 else

24 | ¢i=0.

In multi-agent reinforcement learning, we consider a joint
reward maximization for player i as

vi(s, m) = Y B'ECrilx, 9),

=0

(22)

where B is the discount factor, s” is the next time ¢ + 1 state
s't1. In Q-learning, function Q is defined as

O(s,a)=r(s",a) + B ZP(S, s’ a)v(s', 7). (23)

Q-learning provides us with a simple Q value update as
follows:

0't(s.a) = (1 —a)Q'(s', ")
+ ozf[r(st, d)+8 max Q’(s’“, a)], (24)

Algorithm 2: Nash Q-Learning Algorithm

1 Require: initial state sq, £, "'Wpin, Ftmin, Ny

2 Ensure: performance of the mmWave small cell uplink,
unicasting resources

3 if (N, > 0) then

4 t< Ofor seSdo

5 forj < 1:Ndo

6 L L th-(s,al,...,aN) «~0

7 while frue do

8 ai(t) < T1;(s), si+1 < P(s, a;(t)) update
Q;“(s, ap, ...,ay) according to (27) r < t+ 1

where «; is the learning rate in the time slot 7. We assume
that all agents in our model are rational and convergent in the
game. A Nash equilibrium 7* is a united strategy in which the
strategy of each agent is the optimum response to other agents.
The Nash equilibrium meets the following requirements:

- 7R)
(25)

* i *
Jy) =V (s o
Vrm; e I1,

i * * *
Vs, ST T T

where IT is the available policy set of agent i.

To meet the low latency requirement of online learning,
WOoLF-PHC algorithm is selected based on its low complexity
and computational space requirement. However, in small-scale
scenario, Nash Q-learning converges faster than WoLF-PHC
and achieves almost as good performance as WoLF-PHC.
Therefore, our online reinforcement learning is based on
these two algorithms and we adopt WoLF-PHC in large-scale
scenario and Nash Q-learning in small-scale scenario.

1) Nash Q-learning: In Nash Q-learning, agents observe not
only their own reward but also other agents’ in the model.
The Nash Q-learning algorithm is shown in Algorithm 2.
The Q value function is defined as (s, ai, ..., ay). All agents
are assumed to follow the joint NE strategy. Agent i’s Nash
Q-function is defined as follows:

Oi(s,ai,...,an) =r(s,ai,...,an) + ﬂZP(s’, a, .. .,aN)
s'esS
x vi(s, i, ..y, (26)
where (rf,...,my) is the joint Nash equilibrium strat-
egy, r(s,ai,...,ay) is reward in state s based on joint
action ap,...,ay. vi(s,m{,...,my) is the total discount

reward defined in (25). Nash Q-learning updates Q-value
according to

O (s, a1, ... an) = (1 —a)Qis, a1, ..., ay)
+ o[r(s, ar, ..., an) + BNashQi(s')].
(27)
We have
NashQi(s") = i (s') - - n(s') - Q(s'). (28)
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Theorem 2: Nash Q-learning updates Q-value updated by
formula (27):

Ot Gvar, ... an) = (1 —a)Qis, ar, ..., ay)
+ a,[r(si, ai,...,ay) + ,BNashQ;(s’)],
(29)
converges to Q, with probability 1.
Proof: The learning rate o satisfies ), o;(s,a) =

00, Ztatz(s, a) < oo. We define the mapping H' : R — R,
where

H'(s,ai,...,an)0i(s, ai, ..., ay)
=r(s,ay,...,ay) + ,BNashQﬁ(s/). 30)
Then, the iteration is define by,
O = (1 —a)Q} + e (H'Q)). (31)

According to [32], [33], if there is a number 0 < B <
L |H'Q; — H'Q}Il < BIQ; — QF |l and Qf = E[H'Q}], the
formula (27) converges to Q* w.p. 1. Now, we proceed to
prove the two conditions. Based on formula (23), we have

Qi(s,ai,...,an) =r(s,ai,...,an)
+ﬂZP(s/,a1,...,aN)v,-(s,nf‘,...,nX})
s'es
= ZP(S/,al, R aN)[r(sk,al, ..., ap)
s'eS
+ Bvi(s. 7 .. 7))
= E[H'Q{(s,a1,...,aN)], (32)

for all 5, a. Thus QF = E[H'Q}].

We assume that we can find a global optima or saddle point
in every state game. For |H!Q! — HIQ¥| < BlO! — QF|l, we
have

|HiQ; — H'0; | = max|H'0; — H'Q)
1

= maxmax| By (s) - - - T (5)Qi(s)
— B(s) - () OF (s)]
= mlfolXﬁlm (8) - TN () Qi(s)
— () (O (s)]. (33)
We proceed to prove that
|1(s) -+ N () Qis) — 71 (8) -+ TR () QF (5)]
< |Qits) — QF (|-

We replaced the symbol in the original formula with a new
symbol to make the formula more concise. The above formula
can be expressed as

0i0-i0i(s) — 070" 0 )| = |Qi9) — Qf W], 39)

Case 1: Assume (o1, ..
optimal points.
If 0,0_;Qi(s) < 070 *,Q7(s), we have
0i0-iQi(s) — 0/ 0,0/ ()

< 0i0-;iQi(s) — 0j0-;Q; (s)

(34)

.,on) and (al*, ..., 0y) are global

= Y oila)...on(an)(Qils, ai, ..., ay)
ap...ay
— Qi(s,ai, ..., aN))
< Y oi@)...onan)||Qis) — O ) |
= [Qits) — Q|- (36)

If 0;0_;Qi(s) < 070 *;Q7%(s), then
Ui*o’in;k(S) —0i0-;Qi(s) < Ui*o’ini(S) - Ui*Uini(S)» (37)
and the rest of the proof is similar to the above.
Case 2: Suppose NE are saddle points, if o;0_;Q;(s) >
oa*.07(s), we have
0i0-iQi(s) — 070,07 (s) < 0i0_;Qi(s) — 0;0*;07 (s)
< 0;0%;0i(s) — 00,07 (s)
< [|its) = QF ()|

If 0;0_;0i(s) < 0;*0*,Q7 (s), a similar proof applies. Thus

|10 — H'Q|| < maxmax B{(s) - N () Qi(s) = TY()QF (5]

(38)

< Blo- 0. (39)
Both conditions have been proven; therefore, the updated
formula (27) converges to Nash Q-Values Q*. [ |

(2) WoLF-PHC: Due to the large number of agents, the
computational complexity grows exponentially. Therefore, we
adopt the WoLF-PHC scheme. The Q-value update formula of
WoLF-PHC is defined as follows,

Q§+1(s,~, aj) = (1 - Olt)Qﬁ(Si, a;)
+ ozt<r(s§, a)+y max 0i(s, a’)),

for i=1,...,N, (40)

where « is the learning rate, ranging from O to 1. y is the
discount coefficient indicating the importance of reward in the
following time slots.

To further improve the joint cooperation efficiency, WoLF-
PHC defines C(s) as the number of states s that has appeared
during the Q-value update and applies estimate policy 7’ to
record and adjust policy w, which is

1

wl(s, a) < 7/(s, a;) + m[ni(s, a) — (s, a)]. (41

After the estimate policy 7’ updates, it is compared with
A Y ca, (s, a)Qils, ai) > D, ca, T (s, a)Qi(s, ai), 7
is regarded as the winner. Otherwise, " is regarded as the
winner. As is shown in Algorithm 3, the agent learns quickly
when losing and slowly when winning.

The online reinforcement learning for mode selection based
on VR broadcasting is shown in Algorithm 3. N, is the active
user number in the model. rwy,;, reflects the mmWave small
cell uplink performance threshold and ru,,;, reflects the unicas-
ting resources wasting performance threshold. r; under these
two values is regarded as 0. 5" is the state when the agent in
the state s takes the action q;.

However, as far as we know, the convergence of WoLF-PHC
hasn’t been proved theoretically. WoLF-PHC learns by only
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Fig. 2. D2D cluster and hybrid transmission mode selection strategy.

Algorithm 3: Win or Learn Fast Policy Hill Climbing
Algorithm

1 Require: &, 8y, s, t, "'Wiin, Flimin, Ny

2 Ensure: performance of the mmWave small cell uplink,
unicasting resource wasting.

3 if (N, > 0) then

4 for i < 1: N do

5 L 0Qi(s,a;) < 0, mi(s,a;) < IA—‘ 7'(s, a;) < T

81 < by, C(s) <0

¢ while true do

7 a;i(t) < T1;(s), r; < r(s, a;(?)), s < P(s, a;(1))
Qi(s, ai(1)) <

Qi(s, a;(t)) + alri + y maxy Qi(s', a') — Qi(s, ac)] if
(ri < max(r'wpin, rmin)) then

8 L rj <— 0

9 fori<1: |A]|do
10 C(s) < C(s) + 1
w(s, a;) < m(s, a;) + %[m(s, a;) — (s, a;)] if
(D grea ils, a)Qils, a;) >
> aica; i (s, a)Qi(s, a;)) then
u L 8 < &
12 else
13 t 8 <« 8 85q < min(m;(s, a;), \A|L—l)
14 if (a; # argmax,Q(s, a’)) then
15 | & < =8
16 else
17 L Esa < Za/;,ga Ssar
18 | 7ils, ai) < 7i(s, ai) + &sa
19 t<t+1s<«5s

changing learning rate, indicating that the algorithm remains
rational. In the next section, empirical results show that WoLF-
PHC converges to an equilibrium in self-play with multi-agent
model.

V. SIMULATION RESULTS AND ANALYSIS

We simulate our proposed smart mode selection according
to Fig. 2 to prove its ability to improve the system throughput.
The simulation environment is a 5G HetNet, which consists

: <
Nash Q-learning | no

TABLE I
ENVIRONMENT SIMULATION PARAMETERS

Simulation Parameters Value
Number of user 50 :2:200
Number of D2D cluster k1 5
Number of small cell £2 5
Broadcasting bandwidth B, 100 MHz
mmWave small cell total bandwidth B; 1 GHz
Power of macro cell Py, 43 dBm
Power of D2D cluster Py 26 dBm
Power of small cell P; 33 dBm
Power of AWGN o -174 dBm
Unicasting resource performance 7wy in 0.05 Gbps
Small cell uplink performance ruyin 0.05 Gbps

TABLE I
LEARNING APPROACH PARAMETERS

Algorithm Learning approach Parameters Value
Learning rate o 0.1
Deep Greedy ftz}ctor € 0.1
g Discount factor -y 0.9
Q-Network Batch size 20
Experience replay memory number 5000
Learning rate o 0.1
[1‘\1 aSh. Greedy factor € 0.1
Q-Learning Discount factor ~y 0.9
Learning rate 0.1
WoLF-PHC Win rate d,, 0.01
Lose rate d; 0.001

of macro cell, small cells and D2D clusters. The macro BS
locates in the centre of the region, while the small BSs and
D2D clusters are distributed at the edge of the macro cell.
The channel gains are determined by the physical distance
between the VR user and the broadcast VR signal transmitting
point. Table I lists the values of the main simulation param-
eters. We compare the performance of our WoLF-PHC and
Nash Q-learning scheme with other algorithms, such as simple
greedy algorithm, stochastic algorithm and Deep Q-learning.
Offline training number is assumed to be 2000, constrain-
ing that the convergence of WoLF-PHC cannot be too slow.
Learning rate of these algorithms is all set to the same value
of 0.1. Therefore, learning approach parameters are shown in
Table II. In the simple greedy algorithm, each user chooses
its best policy itself. In the stochastic algorithm, each user
randomly choose an action. The Nash Q-learning and deep Q
Network all need |S| - |A|"Y space to maintain a joint Q-value
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Fig. 3.  Online optimization performance on total user rate of different

algorithms vs. time slot (200 agents).

table, which means that these two algorithms are not suit-
able in large-scale scenario. WoLF-PHC costs just N - [S] - |A[,
indicating that it is more efficient in large-scale user sce-
narios. Therefore, WoLF-PHC, simple greedy and stochastic
algorithm are simulated when user number is 200 and WoLF-
PHC, simple greedy, stochastic, Nash Q-learning and Deep
Q-learning are simulated when user number is 5.

The scheme is evaluated from four aspects: online
optimization performance on total user rate, empirical cumu-
lative distribution function (CDF) of user rate, training
performance on total user rate of different learning approach
parameters and system bandwidth efficiency. In broadcasting
model, we define bandwidth efficiency ¢ as, ¢ = S/ (B, + B)),
where S means the system throughput, B, means the broad-
casting bandwidth, B; means the total small cell bandwidth.

As shown in Fig. 3, in large-scale scenario with 200 agents,
the WoLF-PHC algorithm achieves higher system throughput
compared with the simple greedy and stochastic algorithms.
This shows that WoLF-PHC can improve the service quality
of VR users and create a better user experience. In our sim-
ulation model, WoLF-PHC achieves performance nearly 50%
higher than simple greedy algorithm. Because the proposed
scheme can dynamically select a better transmission scheme
for users according to the state of the system. Compared with
WOoLF-PHC, user in simple greedy algorithm chooses mode
only based on its own information.

Fig. 4 presents the system throughput under different
policies in small-scale scenarios, where there are only 5
users. When the number of users is small, WoLF-PHC,
deep Q network and Nash Q-learning can also achieve good
performance while the random algorithm fluctuates greatly.
However, Deep Q Network’s convergence is still poor. Simple
greedy algorithm often performs well in small-scale scenario
due to the reason that the impact between users is relatively
small. However, in simple greedy algorithm, bad user may
cause significant system performance degradation. The empir-
ical CDF plots in Fig. 5 presents the data rate for our proposed
hybrid transmission mode with different algorithms in large-
scale scenario. In Fig. 5, the user rate of WoLF-PHC is
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generally higher than random pick and simple greedy algo-
rithms. The minimum data rate requirements considered in this
evaluation is 0.05 Gbps for users. We discover that WoLLF-PHC
algorithm keep the ratio of user rate lower than min data rate
required is less than 5%. However, this ratio in random pick
and simple greedy are 61% and 14%. This is due to the fact
that WoLF-PHC can find a more suitable and optimal trans-
mission mode for each user, thereby improving the user rate
and reducing the number of users with low rate.

The hyper parameters evaluation results of the proposed
WOLF-PHC algorithm for large-scale user scenarios is given
in Fig. 6. First of all, we can find that the total user rate
eventually convergence after a certain number of iterations.
Obviously, the size of the convergence value and convergence
rate are influenced by the win rate and lost rate. The con-
vergence speed increases with the increase of the two hyper
parameters, while the convergence value of the total user rate
decreases. This is consistent with the actual situation. When
the learning rate decreases, more times of learning are needed
to converge. Therefore, we can adjust the hyper parameters
value according to the actual requirements of the scenario to
improve the user experience.
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Fig. 7. Training performance on total user rate of different learning approach
parameters vs. training number (5 agents).

In addition, Fig. 7 presents the training performance of Nash
Q-learning with WoLF-PHC in small-scale scenario. WoLF-
PHC ultimately realizes a higher total user rate value since that
WOoLF-PHC tends to converge to a optimal point in Nash equi-
librium. Meanwhile, Nash Q-learning performs more stably on
the convergence curve and reaches the convergence state faster
because each user knows the whole system information in the
algorithm and is more likely to choose the appropriate mode,
which also means that Nash Q-learning may converge to a
saddle point in nash equilibrium.

Fig. 8 shows the average user performance under different
policies. In our proposed scheme, there are three strate-
gies: macro cell broadcasting, macro cell broadcasting with
mmWave small cell unicasting and our proposed smart mode
selection. We consider the average user rate with different user
numbers ranging from 50 to 200. First, as seen from the Fig. 8§,
because the user rate is related to the worst user’s rate in the
system and more users would bring more interference, the
average user rate of all the policies declines with the num-
ber of users increases. Second, the average user rate of our
proposed smart mode selection is higher than others. When
the user number increases, the average user rate of our smart
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mode selection is more than 200% of others’, which suggests
that we put forward the D2D assisted 5G HetNet perform
excellent.

In Fig. 9, we compare the system spectrum efficiency of
only macro cell broadcasting, small cell unicasting assisted
macro cell broadcasting and our proposed hybrid transmission
mode selection. When user number is small, our proposed
smart mode selection’s bandwidth efficiency is almost 300%
of that of only macro cell broadcasting. As the user num-
ber increases, the bandwidth efficiency of our proposed smart
mode selection is still almost 200% of that of mmWave small
cells unicasting assisted eMBMS. The spectrum efficiency
of macro cell broadcasting increases while that of mmWave
small cells remains almost the same. Due to the reason that
each user adopting a small cell policy has its own bandwidth,
the spectrum efficiency of strategies, including a small cell
is lower than that of other strategies when the user number
increases.

The evaluation results in this section indicate that our
proposed smart mode selection performs better both at
the aspect of online performance and convergence speed.
Moreover, the results show that the throughput and bandwidth
efficiency benefit from our proposed smart hybrid transmission
mode selection.
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VI. CONCLUSION

To achieve the efficient transmission of 5G VR broad-
casting, an intelligent mode selection scheme based on
reinforcement learning has been proposed in this paper. First, a
novel hybrid transmission mode selection framework of D2D
multicasting, mmWave small unicasting, macro cell broadcast-
ing is established to support the VR broadband broadcasting
in 5G HetNets. Second, the principle of user association is dis-
cussed for each transmission mode. To maximize the system
throughput, we formulate the best mode decision process as an
optimization problem. Then, we propose a scheme based on
online reinforcement learning to address it. State, action, and
reward functions are elements of RL that are designed to adapt
the proposed problem. Two RL policies, Nash Q-learning
and Wolf-PHC, are discussed with a convergence analysis.
Finally, the simulation results verify that our proposed smart
mode selection scheme enables better system throughput for
VR broadband services with a moderate resource cost than
traditional broadcasting schemes in 5G HetNets. With the
promotion and application of 5G technology, new technical
challenges will constantly emerge in the field of 5G VR
broadcasting. In the future, we will focus on a more general
algorithm for multiple scenarios on the basis of this paper.
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