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Proposition 1.1 An arbitrary DT sinusoidal sequence x[k] = A sin({2pk + ) is
periodic iff $20/2r is a rational number.

The term rational number used in Proposition 1.1 is defined as a fraction of
two integers. Given that the DT sinusoidal sequence x[k] = A sin(§2pk + 0) is
periodic, its fundamental period is evaluated from the relationship

L 1.7
2 Ko ( )
as
2
= —m. 1.8
Ko -Qom (1.8)

Proposition 1.1 can be extended to include DT complex exponential signals.
Collectively, we state the following.

(1) The fundamental period of a sinusoidal signal that satisfies Proposition 1.1
is calculated from Eq. (1.8) with m set to the smallest integer that results
in an integer value for K.

(2) A complex exponential x[k] = A exp[j(f20k + 6)] must also satisfy Propo-
sition 1.1 to be periodic. The fundamental period of a complex exponential
is also given by Eq. (1.8).

Example 1.4
Determine if the sinusoidal DT sequences (i)(iv) are periodic:

(D f1k] = sin(wk/12 + 7 /4);
(ii) g[k] = cos(3mk/10+ 0);
(iii) A[k] = cos(0.5k + ¢);
(iV) p[k] =2 ej(7nk/8+0)_

Solution
(i) The value of Q in f[k]is 7/12. Since £2o/27 = 1/24 is arational number,
the DT sequence f[k] is periodic. Using Eq. (1.8), the fundamental period of
fIk] is given by
2
Ko = -0—7:m = 24m.

Setting m = 1 yields the fundamental period Ko = 24.

To demonstrate that f[k] is indeed a periodic signal, consider the following:

flk + Ko] = sin(z [k + Ko)/12 + 7/4).
Substituting K = 24 in the above equation, we obtain
FTk + Ko] = sin(r [k + Kol/12 + 7t /4) = sin(wk + 27 + w/4)
= sin(wk/12 + 7/4) = fik].

(i1) The value of 2 in glk] is 37 /10, Since Qo/2m = 3/20 is a rational
number, the DT sequence g[k] is periodic. Using Eq. (1.8), the fundamental

period of g[k] is given by
2n 20m
Ko= —pm ="
0 00 m 3

Setting m = 3 yields the fundamental period K¢y = 20.

(iii) The value of 2 in hlk] is 0.5. Since 20/21 = 1/47 is not a rational

number, the DT sequence h[k] is not periodic.

(iv) The value of 2, in plk) is Tr /8. Since $2/2m =7/16 is a rational
number, the DT sequence p[k] is periodic. Using Eq. (1.8), the fundamental

period of p[k] is given by

2n 16
Ko=—=—m=-"1"
0 .Qom 7

Setting m = 7 yields the fundamental nerind k. — 14

oy



B B < e

Perivlic Witk fundomondad € equancy Tiga prcy

DT %?V\aﬂ @M\zadgq_ﬂ'a’uc_ f/; _gf il
Y‘M’:ﬁ"\a—'é b o ( e Qe'(ac,a‘-,'b-ﬁ).

Example 1.3 shows that CT sinusoidal signals of the form x(t) =
sin(wpt + 6) are always periodic with fundamental period 27 /wy irrespective of
the value of wy. However, Example 1.4 shows that the DT sinusoidal sequences
are not always periodic. The DT Sequences are periodic only when /2r isa
rational number. This leads to the following interesting observation.

Consider the periodic signal x(r) = sin(wot + 0). Sample the signal with a
sampling interval T'. The DT sequence is represented as x[k] = sin(wokT + 6).
The DT signal will be periodic if 2y/27r = woT /27 is a rational number., In
other words, if you sample a CT periodic signal, the DT signal need not always
be periodic. The signal will be periodic only if you choose a sampling interval
T such that the term woT /27 is a rational number,




4 ) éw% cnod Powoer Signals
The 3ol ettyy of A Stgnuy ca-
+ L
& = 20k ®
Jez- o
TAL poscrer ¢, defined an

K

: l 2

K==L e )i [XC k3
K- o0 Jez -l

Fov Feas e %fﬁmd_/&/wi Qawsgfmf—% ¥,’M¢a—
Prwel by (Cpndidon ng ene Podold

k)t -/

=g 3 Ixpug®
k:k,

A Signal ,}JMW Aanal
0<fx<w

thak B ; V/ s LAY 14 oL Y- Zacq Fulz, voalis.

A Signel iy o Powec Siqmal
A Pweh U ey and it

6 <<

=)

—



Example 1.7
Consider the following DT sequence:

e 0% k>0

flk]:{o k< 0.

Determine if the signal is a power or an energy signal.

Solution
The total energy of the DT sequence is calculated as follows:

Er= 3 IR = Zw“W ZwW——i—~u&

k=-00

Because E is finite, the DT sequence f[k] is an energy signal.

In computing E, we make use of the geometric progression (GP) series to
calculate the summation. The formulas for the GP series are considered in
Appendix A.3.

Example 1.8
Determine if the DT sequence g[k] = 3 cos(wrk/10) is a power or an energy
signal.

Solution
The DT sequence g[k] = 3cos(k/10) is a periodic signal with a fundamental
period of 20. All periodic signals are power signals. Hence, the DT sequence
glk] is a power signal.

Using Eq. (1.15), the average power of g[k] is given by

ZQcos (10> Zgoi;[l+cos (2f0k>:|

k=0 k=0
St S ~ -
term 1 term IO

Clearly, the summation represented by term I equals 9(20)/40 = 4.5. To com-
pute the summation in term II, we express the cosine as follows:

19 19
term I = — [eJ""/5 e Imk/5) = 2 eIn/5\k 2 ~jm/Syk
Z wg()+m;@ ¥,

Using the formulas for the GP series yields

19 .
Z(ej"/S)k 1 — e/ 5)20 1 —eimt 1-1
k=0 T—(eFF) ~ 1—(erB)  1-(@h) ~ 0
and
19 : .
Z(e'j"/s)" . 1-—- (e—ﬂ'/5)20 B 1 — e-im4 _ 1—1
=0 1 — (ei/5) 1—(ei"/5) ~ 1— (e7/5) =0.

’;‘erm II, therefore, equals zero. The average power of glk] is therefore given
y

Pg =4.5+O=4_5.

In general, a periodic DT sinusoidal signal of the form x[k]— Acos
(wok + 6) has an average power P, = A%/2.

&
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Deterministic and random signals

If the value of a signal can be predicted for all time (t or k) in advance without
any error, it is referred to as a deterministic signal. Conversely, signals whose
values cannot be predicted with complete accuracy for all time are known as
random signals.

Deterministic signals can generally be expressed in a mathematical, or graph-
ical, form. Some examples of deterministic signals are as follows,

(1) CT sinusoidal signal: x;(¢) = 5 sin(207rt + 6);
2 Ccr exponentially decaying sinusojdal signal: x;(r) = 2¢~* sin(7¢);
ja:
(3) CT finite duration complex exponential signal: x3(¢) = e <5
elsewhere;
(4) DT real-valued exponential sequence: x4[k] = de~2;
(5) DT i:g;ptc;cnemially decaying sinusoidal Sequence: xs[k] = 3e—2 x

sin
5

signal in electrical engineering is the thermal noise generated by a resistor, The
intensity of the thermal noise depends on the movement of billions of electrons
and cannot be predicted accurately.

The study of random signals is beyond the scope of this book. We therefore
restrict our discussion to deterministic signals. However, most principles and
techniques that we develop are generalizable to random signals. The readers
are advised to consult more advanced books for analysis of random signals,

Odd and even signals
A CT signal x.(t) is said to be an even signal if

Xe(t) = xe(—1). (1.16)
Conversely, a CT signal x,(r) is said to be an odd signal if
Xo(1) = —x(—1). (1.17)
A DT signal x,[k] is said to be an even signal if
Xelk] = x.[—k). (1.18)
Conversely, a DT signal x,[k] is said to be an odd signal if
Xolk] = —x,[—k). (119

The even signal property, Eq. (1.16) for CT signals or Eq. (1.18) for DT sig-
nals, implies that an even signal is symmetric about the vertical axis (r = 0).
Likewise, the odd signal property, Eq. (1.17) for CT signals or Eq. (1.19) for
DT signals, implies that an odd signal is antisymmetric about the vertical axis
(t =0). The symmetry characteristics of even and odd signals are illustrated
in Fig. 1.10.
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7/ DT exponential function
The DT complex exponential function with radian frequency 2y is defined as
follows:
x[k] = e H% = e97(cog ok + jsin 20k.) (1.39)
As an example of the DT complex exponential function, we consider x[k] =
exp(j0.2m — 0.05k), which is plotted in Fig. 1.16, where plot (a) shows the real
component and plot (b) shows the imaginary part of the complex signal.
Casel Imaginary component is zero (£20 = 0). The signal takes the following
form:
x[k] = e%*
when the imaginary component {2y of the DT complex frequency is zero. Similar
to CT exponential functions, the DT exponential functions can be classified as
rising, decaying, and constant-valued exponentials depending upon the value
ofo.
Case 2 Real component is zero (o = 0). The DT exponential function takes
the following form:
x[k] = elok = cog wok + jsin wok.
Recall that a complex-valued exponential is periodic iff 12)/27 is a rational
number. An alternative representation of the DT complex exponential function
g 6 s
4 L b
olf —3llle 2
0 ollle 91 r r ,"’
-2 ‘ J -(2) ‘ 1 1‘ % N 3
-4
5 ‘j I \ -4 )
0 ~20 -10 0 10 20 300 3 -20 -10 0 10 20 30
(a) (b)
Fig. 116. DT complex is obtained by expanding
exponential function xjk] =
exp(joznk-o.osk). (a) Real o +if2%)\ K
component; (b) imaginary x[k] = (eCHmNE _ k. (1.40)

component,

where y = (o + ) is a complex number, Equation (1.40) is more compact

than Eg. (1.39).
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DT unit impulse function

The DT impulse function, also referred to as the Kronecker delta function or
the DT unit sample function, is defined as follows:

1 k=0

o (1.50)

8Tk = ulk] — ulk — 1] = [

Unlike the CT unit impulse function, the DT impulse function has no ambiguity
in its definition; it is well defined for all values of k. The waveform for a DT
unit impulse function is shown in Fig. 1.19.

function.

1 ¢ x[k] = &[]
Fig. 1.19. DT unit impulse ———0—0——0—o—L—p—o o o—o—0—{> k
0
3
2 | & x (k] =olk +1]
! ] ]
et — 1 :T s —t——n>Dp | i :;—:-IY:T;;t-'=—bk
-1 01 -101
(a) (b)
xo[k] = 26[k) 3 x[k=368k-1)
2 J
o —o—o- :-_]¢~‘~¢ ————DP k *——o *—9—0—b—b *—0—0—9—9 o >k
-1 01 -101

(9

Fig. 1.20. The DT functions in
Bxample 1.13: (3) xik], (b), x{k],
(9 x2[k). and (d) xs[k]. The DT
function in (a) is the sum of the
shifted DT impulse functions
shown in (b), (c), and (d).

(d

Example 1.13
Represent the DT sequence shown in Fig. 1.20(a) as a function of time-shifted
DT unit impulse functions.

Solution

The DT signal x[k] can be represented as the summation of three functions,
x1[k], x2[k], and x3[k], as follows:

X[k = x;[k] + x20k] + x3[k],
where x[k], x,[k], and x3 [k] are time-shifted impulse functions,
x1[k] = 8k + 1], xq[k] = 25[k], and x3lk] = 48[k — 1],

and are plotted in Figs. 1.20(b), (c), and (d), respectively. The DT sequence
x[k] can therefore be represented as follows:

x[k] = 8[k + 1] + 28[k) + 48[k — 1].
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(c) Time-advanced version
a1k -+ 4] of the DT signal xjk]. (o
Example 1.15
Consider the signal x[k] defined as follows:
02k O0<k<5
k] = {0 elsewhere, (152)

Determine and plot signals p[k] = x[k — 2] and q[k] = x[k +2).

Solution
The signal x[«] is plotted in Fig. 1.24(a). To calculate the expression for p[k],
substitute k = m— 2 in Eq. (1.52). The resulting equation is given by

—21=02m—-2) 0<m-2)<5
plidai {0 elsewhere.

By changing the independent variable from m to k and simplifying, we obtain

_ o JO2k-2) 2<k<7
PIE] =xik ~2) = {0 elsewhere,

The non-zero values of plklfor -2 <k <7, are shown in Table 1.1, and the
stem plot p[k] is plotted in Fig. 1.24(b). To calculate the expression for ¢[k],
substitute k = m + 2 in Eq. (1.52). The resulting equation is as follows:

_[02m+2) 0<m+2)<5
RN {0 elsewhere.

14



39 1 Introduction to signals
1.25 1.25
1 1
0.75 0.75
0.5 0.5
025 0.25
08— T k06— o o I o—so k
4 -2 0 4 6 8 100 -2 2 4 6 : 10
(2 (b)
125
Fig. 1.24. Time shifting of the -
DT sequence in Example 1.15. PRt
(2) Original DT sequence x[k). 05
(b) Time-delayed version 0.25 T
xik — 2] of xfk]. 08—o— o o o—o k
() Time-advanced version = y 0 3 4 : : [
xlk + 2] of x[k]. (0
Table 1.1. Values of the signals p[k] and g[k]
k -2 -1 0 1 2 3 4 5 6

1.3.2 Time scaling

7
plk] 0 0 0 0 0 0.2 0.4 0.6 0.8 1
qlk] 0 0.2 0.4 0.6 0.8 1 0 0 0 0

By changing the independent variable from m to & and simplifying, we
obtain
02(k+2) —-2<k<3

glk) SHET21E [0 elsewhere,

Values of g[k], for —2 < k < 7, are shown in Table 1.1, and the stem plot for
q[k] is plotted in Fig. 1.24(c).

As in Example 1.14, we observe that the waveform for p[k] = x[k — 2] can
be obtained directly by shifting the waveform of x[k] towards the right-hand
side by two time units. Similarly, the waveform for ¢[k] = x[k + 2] can be
obtained directly by shifting the waveform of x[k] towards the left-hand side
by two time units.

The time-scaling operation compresses or expands the input signal in the time
domain. A CT signal x(r) scaled by a factor c in the time domain is denoted by
x(ct). If ¢ > 1, the signal is compressed by a factor of c. On the other hand, if
0 < ¢ < 1 the signal is expanded. We illustrate the concept of time scaling of
CT signals with the help of a few examples.
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1.3.2.1 Decimation

If a sequence x[k] is compressed by a factor c, some data samples of x[k] are
lost. For example, if we decimate x[k] by 2, the decimated function ylk] =
x[2k] retains only the alternate samples given by x[0], x[2], x[4], and so on.
Compression (referred to as decimation for DT sequences) is, therefore, an
irreversible process in the DT domain as the original sequence x[k] cannot be
recovered precisely from the decimated sequence y[k].

1.3.2.2 Interpolation

In the DT domain, expansion (also referred to as interpolation) is defined as
follows:

L2 . .
X ™[k] = lx [Z] if k is a multiple of integer m (1.54)

0 otherwise,

The interpolated sequence x™[k] inserts (m — 1) zeros in between adjacent
samples of the DT sequence x[k]. Interpolation of the DT sequence x[k] is a
reversible process as the original sequence x[k] can be recovered from x™[k].

Example 1.17

Consider the DT sequence x[k] plotted in Fig. 1.26(a). Calculate and sketch
plk] = x[2k] and q[k] = x[k/2].

14
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Table 1.2. Values of the signal p[k] for —3 <k <3

k -3
plk] x[-6]=0

-2
x[-4) =02

-1 0 1 2 3
x[-2]=06 x[0]=1 x[2]J=0.6 x[4]=02 x[6]=0

Table 1.3. Values of the signal g[k] for —10 < k < 10

k -10 -9 -8 -7 —6 -5 -4
qlk] x[-51=0 O x[-4=02 0 x[-3]1=04 O x[-2]=0.6
k -3 -2 -1 0 1 2 3
qlkl 0 x[-1]1=08 0 x[0l=1 © x[11=08 0O
k 4 5 6 7 8 9 10
qlk]l x[21=06 O x[31=04 0 x[4] =02 0 x[5]1=0
12 12
1 1
0.8 0.8
0.6 0.6
04 0.4
0.2 02
0 > o > © 00— —0—0 2 = o—a k
10 -8 -6 -4 -2 2 4 6 8 10 -0 -8 -6 4 -2 0 2 4 6 10
(2 (b)
1.2
1
0.8
Fig. 1.26. Time scaling of the DT 0.6
signal in Example 1.17. 0.4
(3) Original DT sequence x[k]. 0.2
(b) Decimated version x{2k], of L e R e w"
x{k]. (¢) Interpolated version
x{0.5k] of signal xik]. (9
Solution

Since x[k] is non-zero for —5 < k < 5, the non-zero values of the decimated
sequence p[k] = x[2k] lie in the range —3 < k < 3. The non-zero values of
plk] are shown in Table 1.2. The waveform for p[k] is plotted in Fig. 1.26(b).

The waveform for the decimated sequence p[k] can be obtained by directly
compressing the waveform for x[k] by a factor of 2 about the y-axis. While
performing the compression, the value of x[k] at k = 0 is retained in plk]. On
both sides of the £ = 0 sample, every second sample of x[k] is retained in p[k].

To determine g[k] = x[k/2], we first determine the range over which x[k/2)
is non-zero. The non-zero values of g[k] = x[k/2] lie in the range —10 < k <
10 and are shown in Table 1.3. The waveform for ¢[£] is plotted in Fig. 1.26(c).

The waveform for the decimated sequence g[k] can be obtained by directly
expanding the waveform for x[k] by a factor of 2 about the y-axis. During

[7
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Table 1.4. Values of the signal g,[k] for —10 < k < k

k
9211

k
q2[k]

k
qa[k]

-10
x[-5]1=0

g
0.7

4
x[2] =0.6

-9 -8 -7 -6 -5 -4
0.1 x[~4]=02 03 x[-31=04 05 x[~2] = 0.6
9] -1 0 1 2 3
x[-11=08 09 x0]=1 09 x[11=08 0.7
5 6 7 8 9 10
0.5 x[31=04 03 x[41=02 01 x[5]1=0

expansion, the value of x[k] at k = O is retained in g[]. The even-numbered
samples, where £ is a multiple of 2, of g[k] equal x[k/2]. The odd-numbered
samples in g[k] are set to zero.

While determining the interpolated sequence x[mk], Eq. (1.54) inserts (m — 1)
zeros in between adjacent samples of the DT sequence x[k], where x[£] is not
defined. Instead of inserting zeros, we can possibly interpolate the undefined
values from the neighboring samples where x[k] is defined. Using linear inter-
polation, an interpolated sequence can be obtained using the following equation:

x [-:l—:l if k is a multiple of integer m
x™[k]=

e e s

where | £ | denotes the nearest integer less than or equal to (k/m), [£7 denotes
the nearest integer greater than or equal to (k/m), and @ = (k mod m)/m. Note
that mod is the modulo operator that calculates the remainder of the division
k/m. For m = 2, Eq. (1.55) simplifies to the following:

x [;] ifk is even
x(z)[k] =

0.5 (x[k;1]+x[£;—l]) if k is odd.

Although, Eq. (1.55) is useful in many applications, we will use Eq. (1.54) to
denote an interpolated sequence throughout the book unless explicitly stated
otherwise.

Example 1.18
Repeat Example 1.17 to obtain the interpolated sequence g;[k] = x[k/2] using
the alternative definition given by Eq. (1.55).

Solution

The non-zero values of ¢2[k] = x[k /2] are shown in Table 1.4, where the val-
ues of the odd-numbered samples of g»[k], highlighted with the gray back-
ground, are obtained by taking the average of the values of the two neighboring

\ 2
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Fig. 1.27, Interpolated version 12

%{0.5k] of signal x{k], where 1
unknown sample values are 0.8 ’
interpolated. 0.6 '
0.4
02 ! ? ;'
p I [ 1], '

8 6 4 2 0 2 4 6 3 :

samples at k and k — 1 obtained from x[k). The waveform for q2[k] is plotted in f
Fig. 1.27. ’

1.3.3 Time inversion

The time inversion (also known as time reversql or reflection) operation reflects
the input signal about the vertical axis (¢ = 0). When a CT signal x(¢) is time-
reversed, the inverted signal is denoted by x(—t). Likewise, when a DT signal
x[k] is time-reversed, the inverted signal is denoted by x[—k]. In the following
Wwe provide examples of time inversion in both CT and DT domains,

125 1.25
1 1
0.75 0.75
0.5 0.5
25 3
0.25 1 \ 0 N 1 ’
-8 -6 -4 -2 0 2 4 6 8 8 -6 -4 -2 0 2 4 6
(@) (b)

Fig. 129. Time inversion of the  The time-reversed signal x(—t) is plotted in Fig. 1.28(b). Signal inversion can

DT signal in Example 1.20. also be performed graphically by simply flipping the signal x(r) about the
(a) Original CT sequence xk].

() Time-inverted version x|—k). >~ 215"
Example 1.20
Sketch the time-inverted version of the following DT sequence:
1 —-4<k=<-1
x[k]=3025% O<k<4 (1.57)
0 elsewhere,

which is plotted in Fig. 1.29(a).
Solution

To derive the expression for the time-inverted signal x[—k], substitute
k = —m in Eq. (1.57). The resulting expression is given by

1 -4 <-m< -1
x[—m]={—-0.25m O0<-m<4
0 elsewhere.

Simplifying the above expression and expressing it in terms of the independent

variable £ yields
1 1<m<4
x[-m]=4{-025m —4<-m <0
0 elsewhere.

The time-reversed signal x[—k] is plotted in Fig. 1.29(b).

]
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Fig. 2.1. General schematics of CT systems. (a) Multiple-input, multiple-output (MIMO) CT system
inputs and n outputs. (b) Single-input, single-output CT system.
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Fig. 2.2. Generalschematisof  notation:
. (@) Multiple-input, - -
zng:;?ut;u)t (MIMO) DT CT system x(r) = y(1); (2 2)
system with m inputs and n DT system x[k] — y[k]. 2.2)

outputs. (b) Single-input,
single-output DT system,

(/W SI A0 ¢ achien 06 SygI-emaz
> 34SIemD Can be chonss 1dize]

(i) linear and non-linear systems;
(ii) time-invariant and time-
(iil) systems with and witho
(iv) causal and non-
(v) invertible and nop-

(vi) stable and unstable systems,
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Example 2.2

Consider two DT systems with the following input—output relationships:

(a) differencing system  y[k] = 3(x[k] — x[k — 2]); (2.37)
(b) sinusoidal system y[k] = sin(x[k]). (2.38)

Determine if the DT systems are linear.

Solution
(a) From Eq. (2.37), it follows that:

x1[k] = 3x1[k] — 3x;[k — 2] = y,[k]
and
x2[k] = 3x2[k] — 3x2[k — 2] = y,[k),
giving
axi[k] + Bxalk] — 3ax;[k]) — 3ax; [k — 2] + 3Bxz[k) — 3Bx2[k — 2).
Since
3ax1[k] — 3ax)[k — 2]+ 3Bxa0k] — 3Bx,[k — 2] = ey, [k] + Byalk),
the differencing system, Eq. (2.37), is linear.

’b) x, [ kz:] -#S;\ﬂcxn[kj) '}lélakj

o A

X1k = Sim (XeLk)) = Y, [ k]
B uit
o X,[k]+/ xv.[bo]-—a Sin <0§X,Uo]-\—BXz£k3)

N : wik T 3,[1’3‘\‘\31“"3
w hoch v a2 .
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Example 2.5

Consider two DT systems with the following input-output relationships:

(i) system1 yIk] = 3(x[k]) — x[k — 2D; (2.44)
(ii) systemII ylk] = k x[k). (2.45)

Determine if the systems are time-invariant.

Solution
(i) From Eq. (2.44), it follows that:

x[K] = 3(x[k] - x[k — 2]) = y[#]

G
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x[k—-2] 13
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-1-2 01 23 456 7 8 910 -1-2 01 2 3454678 910
(© (d
Fig. 2.15. Input-output pairsof  and
the DT time-varying system
spedfied in Example 2.5(7). The x[k — ko] = 3(x[k — ko] — x[k — ko — 2]) = y[k — ko).
output y[k] for the time-shifted

input xa{k] = xfk — 2]is
different in shape from the
output y[k] obtained for input
xik]. Therefore the system is
time-variant. Parts (2)~(d) are x[k] — kx[k] = ylk]
discussed in the text.

Therefore, the system in Eq. (2.44) is a time-invariant system.
(ii)) From Egq. (2.45), it follows that:

and
x[k — ko] — kx[k — ko] # y[k — ko] = (k — ko)x[k — ko).

Therefore, system II is not time-invariant. In Fig. 2.15, we plot the outputs of
the DT system in Eq. (2.45) for input x[k], shown in Fig. 2.15(a) and a shifted
version x[k — 2] of the input, shown in Fig. 2.15(c). The resulting outputs are
plotted, respectively, in Figs. 2.15(b) and (d). As expected, the Fig. 2.15(d) is
not a delayed version of Fig. 2.15(b) since the system is time-variant.
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Table 2.1. Examples of CT and DT systems with and without memory

Continuous-time Discrete-time
Memoryless systems Systems with memory Memoryless systems Systems with memory
YO =3x(t)+5 y)=x(-5) ylk] = 3x[k]+ 7 Ykl = x[k — 5]
y(@) = sin{x(1)} + 5 YO =x(t+2) ylk] = sin(x[k]) + 3 ylk) = x[k + 3]
@) =e® y(0) = x(2) ylk] = el Ykl = x[24]
(0 =xr) Y(®) =x(t/2) Ykl = x%[k] ylk] = x[k/2)

LI.) Causal and non-causal systems

A CT system i8 causal if the output at time # depends only on the input x(¢) for
! =< 1. Likewise, a DT system is causal if the output at time instant ko depends
only on the input x[k] fork < ko. A system that violates the causality condition is
called a non-causal (or anticipative) system. Note that all memoryless systems
are causal systems because the output at any time instant depends only on

the input at that time instant. Systems with memory can either be causal or
non-causal.

Example 2.7

@i CT time-delay system (1) = x(t — 2) = causal system;
(ii) CT time-forward system  y(r) = x(* + 2) = non-causal system,;
(ili) DT time-delay system Ykl = x[k — 2] = causal system;
(iv) DT time-advance system  y[k] = x[k + 2] = non-causal system;
(v) DT linear system Ykl = x[k — 2] + x[k + 10] = non-causal
system.

Table 2.2. Examples of causal and non-causal systems S _
The CT and DT systems are represented using their input-output relationships. Note that all systems in the table

have memory.
CT systems DT systems
Causal Non-causal Causal Non-causal
= - = x[k + 3]
=x(t—5 y()=x(t+2) ylkl = 3.x[k 1147 ylk) x|
ig; = :i(r:{x(t )— D+3 y@O =sinfx¢+4)}+3  yk]= sm(xz[k —-4n+3 ylk] = smz(;c[k +4D+3
() =2 (@) =x(20) ylk] = et ylkl = x[k ]2
y(0) =x*1t —2) ¥(1) = x(1/2) ylk] = x*[k — 5] y[k] = x[k/2]

YO =xE=2)+x0 =5 yO=x(t—2D+x(+2) yk]=x[k—2]+x[k —8] y[k] = xlk+2] + x[k — 8]
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9_/ Invertible and non-invertible systems

A CT system is invertible if the input signal x(7) can be uniquely determined
from the output y(t) produced in response to x(r) for all time ¢ € (—o00, 00).
Similarly, a DT system is called invertible if, given an arbitrary output response
ylk] of the system for k € (—00, 00), the corresponding input signal x[k] can be
uniquely determined for all time k (—00, 00). To be invertible, two different
inputs cannot produce the same output since, in such cases, the input signal
cannot be uniquely determined from the output signal.

A direct consequence of the invertibility property is the determination of a
second system that restores the original input. A system is said to be invertible
if the input to the system can be recovered by applying the output of the original
system as input to a second system. The second system is called the inverse
of the original system. The relationship between the original system and its
inverse is shown in Fig. 2.17.

CcT paU) inverse DT yik] inverse
x() —p EAEN > — — >
@ system system Ho k] system system 3k

@) ®

Example 2.9 . '
Determine if the following DT systems are invertible.

(i) Incrementally linear system:
ylk] = 2x[k] + 7.
The input—output relationship is expressed as follows:
' xlk] = 3 1k = 7).

The above expression shows that given an output signal, the input can be
uniquely determined. Therefore, the system is invertible.
(ii) Exponential output:

ylk] = e,
The input—output relationship is expressed as follows:
x[k] = In{y[k]}.

The above expression shows that given an output signal, the input can be
uniquely determined. Therefore, the system is invertible.

(iii) Increasing ramped output:
ylk] = k x[k].

The input—output relationship is expressed as follows:
1
xlk] = ;y[k]-

The input signal can be uniquely determined for all time instant &, except at
k = 0. Therefore, the system is not invertible.

5



(iv) Summer:
y[k] = x[k) + x[k — 1].

Following the procedure used in Example 2.8(iv), the input signal is expressed
as an infinite sum of the output y[k] as follows:

xlk] = ylk] = ylk — 1]+ ylk =2 — y[k = 3]+ — -+
=Y (~D"ylk—m).
m=0

The input signal x[k] can be reconstructed if y[m] is known for allm < k.
Therefore, the system is invertible.
(v) Accumulator:
k

yk1= ) xlm).

m=-—00

We express the accumulator as follows:
k-1
yikl = x(k]1+ Y x[m] =x[k]+ylk —1]

m=—00

or
x[k] = y[k] — y[k = 1].
Therefore, the system is invertible.
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Example 2.11
Determine if the following DT systems are stable.

6)] ylk] = 50sin(x[k]) + 10. (254)

Note that sin(x[k]) is bounded between [—1, 1] for any arbitrary choice of x[k].
The output y[k] is therefore bounded within the interval [—40, 60]. Therefore,
system (i) is stable.

(ii) y[k] = "4, (2.55)
Assume |x[k]| < B, for all r. Based on Eq. (2.52), it follows that:
ylkl <e? =B, forallk.

Therefore, system (ii) is stable.
2

(iii) ylk] = E x[k = m). (2.56)

m=-=2

The output is expressed as follows:
Ikl = x[k — 21+ x[k — 11+ x[k] + x[k + 1] + x[k + 2].

If |x[k]|] < By for all k, then |y[k]| < 5B, for all k. Therefore, the system is
stable.

k
(iv) ykl= )" x[m). (2.57)
m=-—00
The output is calculated by summing an infinite number of input signal values.
Hence, there is no guarantee that the output will be bounded even if all the input
values are bounded. System (iv) is, therefore, not a stable system.



