Chapter 15: FIR Filter Design

Problem 15.1
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Problem 15.2

(i) The normalized cut-off frequency is given by 0 =i =0.5.

8/2
The ideal lowpass filter for the above normalized cut-off frequency is given by (see Table 14.1 in the text)

by, [k]=0.5sinc(0.5k) = Sa05mk)
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(ii) The normalized cut-off frequency is given by 02 = _Z =0.25.

16/2
The ideal lowpass filter for the above normalized cut-off frequency is given by

hyp[k] = 0.25sinc (0.25k) = S027k)

(iii) The normalized cut-off frequency is given by 2 = 4421 % =0.0907.
The ideal lowpass filter for the above normalized cut-off frequency is given by
o . _ sin(0.0907xk)
hp[k]=0.0907sinc (0.0907k) = S(00507zk) I

Problem 15.3

The amplitude of the 5-tap (N = 21) rectangular, Hanning, Hamming, and Blackman windows are listed in
the following table, and plotted in Fig. S15.3.

Table: Amplitude of the 5-tap (W = 5) Rectangular, Hanning,
Hamming, and Blackman windows.

Window Time Index (k)
0 1 2 3 4
Rectangular 1 1 1 1 1
Hanning 0 0.5 1 0.5 0
Hamming 0.08 0.54 1 0.54 0.08
Blackman 0 0.34 1 0.34 0

Fig. §15.3: 5-tap (V = 5) rectangular, Hanning, Hamming, and
Blackman windows. The markers (x,0) corresponds to the
actual amplitude of the discrete windows.
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Program 15.3: MATLAB code to generate the amplitude of
5-tap (N = 5) Rectangular, Hanning, Hamming, and

Blackman windows.
N=5;
k=0:N-1;
hannw = 0.5-0.5*cos (2*pi*k/(N-1))
hammw = hamming (N)
blacw = blackman (N)

rectw = ones(1,5);
plot(k,rectw,k,hannw,k,hammw,k,blacw);
axis([-1 5 0 1.1])

xlabel('k’')

Ylabel ('Window Amplitude');

print -dtiff plot.tiff

Problem 15.4

The minimum stopband attenuation is 35 dB. From Table 15.2 in the text, it is observed that Hanning,
Hamming and Blackman windows will satisfy the stopband attenuation requirement.

AQ, Q.-Q, 037
m z z

The normalized transition bandwidth, AQ, = 0.3

Using Table 15.2, the length corresponding to various windows is given by
62 6.2

Hanning: N > =——=20.66,0r N =21
AQ 03
) 6.6 6.6 . .
Hamming: N > AQ = 05 =22. N =22.If an odd-length filter is desired, N=23.
11 11
Blackman: N > =—=36.66, or, N =37. |
AQ 03

Problem 15.5

As the minimum stopband attenuation is 35 dB, Eq. (15.20) in the text yields,
B=0.5842(35-21)"* +0.0789(35-21) =1.6789+1.1046 ~ 2.783.
It was shown in the solution of Problem 15.4 that AQ_ =0.3. Therefore, the length of the Kaiser window
is obtained from Eq. (15.21) as follows:
A-17.95 35-7.95

N2 = =12.56
22857rxAQ, 2.2857x0.3

which is rounded off to the closest higher odd number as 13. |
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Problem 15.6
0,
¥3

The normalized cut-off frequency, 02 = - Therefore, the impulse response of the DT filter is given

N[~

by
hyplk]=1Lsinc(£)
The rectangular window with 51 taps is given by
1 0<k<50
0 otherwise

welk]= {

Right-shifting the ideal lowpass filter impulse response by 25 time units, and multiplying with the
rectangular window, the designed FIR filter impulse response is obtained as:

Lsine(42) 0<k<50
Bl = by [kl (k] =

otherwise.
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Figure S15.6: Filter design using windows in Problem 15.6. (a) 51 tap filter obtained
using the rectangular window, (b) amplitude gain (in absolute scale) of the filter, and (c)
amplitude gain (in dB scale) of the filter.
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In order to make the DC gain unity, the filter impulse response is divided by Zh,'m[k] =0.9754:

h,,[k]
k] = —reet®d |
Fralk] 0.9754

The impulse response #__[k] and the frequency characteristics of the filter are shown in Fig. S15.6. l

Program 15.6: MATLAB Program for calculating and plotting the Filter responses

5

clear; clf
N=51;;
M=(N-1)12;
k=0:N-1;

filter_ideal = (1/pi)*sinc((k-M)/pi) ;
window_rect = ones(1,N) ;

S=sum(filter_rect)
filter_rect = filter_rect/S;

% the DC gain is one.

% Plotting the filter impulse response
stem(k, filter_rect, "filled'),grid
ylabel(‘Filter Impulse Response’);
xlabelCk")

print ~dtiff plot.tiff

% Calculating the freq. response
[H, w] = freqz(filter_rect,1);

%Plot in absolute scale

plot(w, abs(H), grid
axis([0 pi 0 1.1];

% Number of filter taps

filter_rect = filter_ideal. *window_rect ;

% the filter impulse response is scaled so that the

clear; cif
N=51;;
M=(N-1)/2;
k=0:N-1;

% Number of filter taps

filter_ideal = (1/pi)*sinc((k-M)/pi) ;
window_hamming = 0.54-0.46*cos(2*pi*k/(N-1)) ;
filter_hamming = filter_ideal.*window_hamming ;
S=sum(filter_hamming)

filter_hamming = filter_hamming/S;

% the filter impulse response is scaled so that the
% DC gain is one.

% Plotting the filter impulse response
stem(k, filter_hamming, 'filled"),grid
ylabel('Filter Impulse Response’);
xlabel(k’)

print -dtiff plot.tiff

% Calculating the freq. response
[H, w] = freqz(filter_hamming,1) ;

%Plot in absolute scale
plot(w, abs(H)), grid
axis(f0 pi 0 1.1]);

xlabel('Frequency (rad/s)") xlabel('Frequency (rad/s)")
ylabel(Amplitude Gain"); ylabelCAmplitude Gain');
print -dtiff plot.tiff print -dtiff plot.tiff
%Plot in dB scale %Plot in dB scale
Hr = 20*log10(abs(H)+eps) ; H =20*log10(abs(H)+eps) ;
plot(w, Hr), grid plot(w, H), grid
axis([0 pi -50 2]); axis([0 pi -80 5));
xlabel(Frequency (rad/s)’) xlabel('Frequency (rad/s)")
ylabelCAmplitude Gain (in dB)'); ylabel(Amplitude Gain (in dB)");
print -dtiff plot.tiff print -dtiff plot.tiff
%PIlot in dB scale
plot(w, H,w,Hr), grid
axis([0 pi -80 5]y
xlabel('Frequency (rad/s))
ylabel(Amplitude Gain (in dB)");
print -dtiff plot.tiff

Problem 15.7

The normalized cut-off frequency, Q2 = 2
T

by

hylk]=sine (&) =

8|~

. Therefore, the impulse response of the DT filter is given
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The Hamming window with 51 taps are given by
0.54-0.46c0s(%£) 0<k<50
0 otherwise

wylk]= {

Right-shifting the ideal lowpass filter impulse response by 25 time units, and multiplying with the
Hamming window, the designed FIR filter impulse response is obtained as:

110.54—0.46cos(2) |sinc(428) 0<k <50

0 otherwise.

In order to make the DC gain unity, the filter impulse response is divided by > &, [k]=0.9982:
Pree[K]
b [kl= lreal?d
el K] 0.9982

The impulse response ,,,..[k] is shown in Fig. S15.7(a). The frequency characteristic of the filter is

shown in Fig. S15.7(b) and (c). Fig. S15.7(d) compares the frequency characteristics of the designed filter
with that of the filter obtained in Problem 15.6.
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Figure S15.7: Filter design using Hamming window in Problem 15.7. (a) Impulse response of
the 51-tap FIR filter, (b) the amplitude gain characteristics of the filter in absolute scale, ©)
the amplitude gain characteristics of the filter in dB scale and (d) comparison of the
amplitude gain characteristic with the filter obtained in Problem 15.6 (using Rectangular
window).
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Problem 15.8
(2) As the minimum stopband attenuation is 45 dB, several windows such as Hamming, Hanning, and
Blackman will satisfy the specification.
(b) The cut-off frequency of the filter is calculated to be
/. =passband edge frequency + 0.5*transition bandwidth = 10.025 KHz + 0.5 KHz = 10.525 KHz

The normalized cut-off frequency is given by

_10.525
" 44.1/2

The ideal lowpass filter for the above normalized cut-off frequency is given by

hy k] = 22OATBE) _ 4773 smc(O 4773k).
The normalized transition bandwxdth, AQ = 2105 & =0.0454.

=0.4773.

From Table 14.3, we know that for Hamming window, A2, = 6—N6

Therefore, N >-28 A6.rg,, 00453 0 45 7 =145.4. We can choose, N=146 (even length) or 147 (odd length). Note that
the 146 tap filter will have a fractional delay (72.5 units) and the 147 tap filter will have an integer delay
of 73 time units.

Case 1: N=146
The Hamming window is given by
0.54-0.46cos 0<k<145
e { (i)

0 otherwise

Right-shifting the ideal lowpass filter by 73 time units, and multiplying with the Hamming window, the
designed FIR filter impulse response is obtained as:

0.4773] 0.54 —0.46cos sine(0.4773(k-72.5)) 0<k<145
hlk]=hk]w, [k]= [ () Jsine( )
0 otherwise.
In this case, " h[k]=1.0004, and hence the scaling of A[k] can be ignored.

Case 2: N=147

The Hamming window is given by
0.54-0.46cos(%) 0<k<146
Wy [x]=

0 otherwise

Right-shifting the ideal lowpass filter by 73 time units, and multiplying with the Hamming window, the
designed FIR filter impulse response is obtained as:

WK = [k, [E] = {0.4773 [0.54-0.46cos(2£) Jsinc(0.4773(k —73)) 0<k <146

0 otherwise.
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In this case, Zh[k] =1.0005, and hence the scaling of A[k] can be ignored.

() The frequency response of the 146-tap and 147-tap filters is shown in Fig. S15.8(i), and Fig. S15.8(ii),
respectively. Note that, because of the shift, both filters are causal.
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Figure S15.8(i). 146-tap FIR filter designed using Hamming Window. a) The impulse response, b) the
blow up of the impulse response showing the middle 40 impulses, c) the amplitude-frequency
response in absolute scale, and (d) the amplitude-frequency response in dB scale. Note that as the
filter has even number of taps, the middle two impulses in Fig (b) have identical amplitude.
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Figure S15.8(ii). 147-tap FIR filter designed using Hamming Window. a) The impulse response, b)
the amplitude-frequency response in absolute scale, (c) the amplitude-frequency response in dB scale,
and (d) the blow-up of amplitude-frequency response near the cut-off frequency.

Program 15.8: MATLAB Program for calculating and plotting the Filter responses

clear; cIf
N=146;;
M=(N-1)/2 ;
k=0:N-1;

% Number of filter taps

filter_ideal = 0.4773*sinc(0.4773*(k-M)) ;
window_hamming = 0.54-0.46*cos(2*pi*k/(N-1)) ;
%win_hamm = hamming(N) ;

filter_hamming = filter_ijdeal.*window_hamming ;
S=sum(filter_hamming)

filter_hamming = filter_hamming/S;

% the filter impulse response is scaled so that the
% sum is one.

% Plotting the filter impulse response
stem(k, filter_hamming, 'filled"),grid
ylabel(Filter Impulse Response');
xlabel('’k")

clear; clf
N=147;;
M=(N-1)/2;
k=0:N-1;

% Number of filter taps

filter_ideal = 0.4773*sinc(0.4773*(k-M)) ;
window_hamming = 0.54-0.46*cos(2*pi*k/(N-1)) ;
%win_hamm = hamming(N) ;

filter_hamming = filter_ideal. *window_hamming ;
S=sum(filter_hamming)

filter_hamming = filter_hamming/S;

% the filter impulse response is scaled so that the
% sum is one.

% Plotting the filter impulse response
stem(k, filter_hamming, filled"),grid
ylabel('Filter Impulse Response');
xlabel('’k")
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print -dtiff plot.tiff

% Calculating the freq. response
[H, w] = freqz(filter_hamming,1) ;

%Plot in absolute scale
plot(w/pi*22.05, abs(H)), grid
axis([0 230 1.1]);
xlabel(‘Frequency (in KHz)')
ylabelCAmplitude Gain");
print -dtiff plot.tiff

%Plot in dB scale
H=20*log10(abs(t])+eps) ;
plot(w/pi*22.05, H), grid
axis([0 23 -80 2]);

print -dtiff plot.tiff

% Calculating the freq. response
[H, w] = freqz(filter_hamming,1) ;

%Plot in absolute scale
plot(w/pi*22.05, abs(H)), grid
axis([0 230 1.1]);
xlabel(Frequency (in KHz)")
ylabel('Amplitude Gain');
print -dtiff plot.tiff

%Plot in dB scale

H = 20*log10(abs(H)+eps) ;
plot(w/pi*22.05, H), grid
axis([0 23 -80 2]);

xlabel(Frequency (in KHz)'") xlabel('Frequency (in KHz)")
ylabel(Amplitude Gain (in dB)'); ylabel('Amplitude Gain (in dB));
rint -dtiff plot.tiff print -dtiff plot.tiff
Problem 15.9

As the normalized cut-off frequency £2,=0.4773, the ideal (IIR) impulse response is given by
h[k]=0.4773sinc(0.4773k).

The passband ripples requirement is not specified. The stopband attenuation should be at least 45 dB.
Therefore, A=45. The shape parameter is then calculated to be
B=0.5842(4-21)"* +0.078(4-21) = 0.5842(45-21)"* +0.078(45—21) ~ 3.9548
The normalized transition bandwidth, AQ, = ZZIT% =0.0454 . Therefore, the window length N is
given by
45-7.95
7.18x0.0454

Substituting B = 3.9548 and N= 114 in Eq. (15.18), the Kaiser window is given by

i [3.9548(\/1 ~[(k-56.5)/56.5T )]
1,[3.9548] ’
0 otherwise.

=113.78 or 114.

0<k<113

Waaser | ] =

By applying a right-shift to the ideal lowpass filter by 56.5 time units, and multiplying with the Kaiser
window, the designed FIR filter impulse response is given by

0.4773sinc(0.4773(k — 56.5)) Wy [K] 0<Kk <113

hlk]= hup (X IWyier [K] = { 0 otherwise
rwise.

In this case, Zh[k] =1.0006, and hence the scaliﬁg of h[k] can be ignored.



The magnitude response of the designed filter is
specifications of the filter are satisfied.
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plotted in Fig, S15.9, and it is observed that the given
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Figure S15.9. 114-tap FIR filter designed using Kaiser Window. (a) The impulse response, (b) the blow
up of the impulse response showing the middle 40 impulses, and (c) the frequency response.

Program 15.9: MATLAB Program for Problem 15.9

clear; clf

A=45 ;

beta = 0.5842*((A-21)"0.4) + 0.078*(A-
21)

NTB = 1/44.1

N = (A-7.95)/(14.36*NTB)

N=ceil (N)

M=(N-1)/2 ;
k = 0:N-1;

filter_ideal=0.4773*sinc(0.4773*(k-M));
filter kaiser
filter_ideal.*(kaiser (N,beta))' ;
S=sum(filter_ kaiser)

filter kaiser = filter kaiser/s;

% Plotting the filter impulse response
stem(k, filter_kaiser, 'filled'),grid
ylabel ('Filter Impulse Response');
xlabel('k')

print -dtiff plot.tiff

% Calculating the frequency response
[H, W] freqz (filter_kaiser,1) ;

H = 20*1ogl0(abs (H)+eps) ;

plot(w,H) ;

plot (w/pi*22.05, H), grid
axis([0 23 -80 2]);

xlabel ('Frequency (in KHz)')
ylabel ('Amplitude Gain (in dB)');
print -dtiff plot.tiff




