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The Direct z-Transform

The z-transform of a discrete-time signal x(n} is defined as the power series

o0

X(z) = Z x(n)z "

A==~=00

where z is a complex variable.

For convenience, the z-transform of a signal x(n) is denoted by
X(2) = Z{x(n)}
whereas the relationship between x(n) and X(z) is indicated by
x(n) e R (2)

Since the z-transform is an infinite power series, it exists only for those values of
z for which this series converges. The region of convergence (ROC) of X (z) is the
set of all values of z for which X (z) attains a finite value. Thus any time we cite a
z-transform we should also indicate its ROC.




Example

Determine the z-transforms of the following firite-duration signals.

(@)

xi(n)=(1,2,5,7,0,1)

() x(n)=11,2,5701)

(c)
(d)

(e)
o
(2

x3(n) = {?' 0,1,2,5,7,01)

=12, 457.01)

xs(n) T50)

x(n) =8(n — k), k=0
xn)=8n+k) k=0

Solution.  From definition (3.1.1), we have

(@
(b)
(<)
(d)
{e)

o
(g)

X1(2) =1+277" + 5772 + 777 + =5, ROC: entire z-plane except z = 0

X3(2) =22+ 22+ 5+ 727" + 273, ROC: entire z-plane except z =0 and z = oo
X3(2)=27242:72 + 5274 + 7278 + 277, ROC: entire z-plane except z = 0

Xi(2) =22% + 4z + 5+ 727" + 273, ROC: entire z-plane except z = 0 and z = o0
Xs(2) =1 [i.e., 5(n) <> 1], ROC: entire z-piane

Xo(z) = 27 [Le, 8(n — k) <= 7], k > 0, ROC: entire z-plane except z = 0

Xy(z) = 2* [Le., 8(n + k) «=> ), k > 0, ROC: entire z-plane except z = o0




Example

EXAMPLE 3.1.2
Determine the z-transform of the signal
(n) = (l)' ()
x(m) = (3)"uln

Solution.  The signal x(n) consists of an infinite number of nonzero values

= e dy Ly
2 =1L G GF e G

The z-transform of x(n) is the infinite power series
c1alagde o, 1o
X(z)—l+zz +EITTHE) T+
= 1 = 1
=Y =Y G
=l 2 =0 2
This is an infinite geometric series. We recall that

x+A+A=+A’+~-=l—_1—; if1A] <1

Consequently, for [jz~'| < 1, or equivalently, for |z| > §, X(2) converges to

X(2) = ROC: [¢] > %
1

1
= %z—l'

‘We see that in this case, the z-transform provides a compact alternative representation of the

signal x(n).




Region of convergence for
X (z) and its corresponding
causal and anticausal
components.

% Region of convergence for

i




Example

Determine the z-transform of the signal

", n=0

x(n) =a"u(n) = [0 n<0

Solution.  From the definition (3.1.1) we have
o0 0
X@)= Za"z_" = Z(az_l)"
n=0 n=0

If ez"'| <1 or equivalently, [z| > |a|, this power series converges to 1/(1 — az™'). Thus we
have the z-transform pair




ROC

‘Hm /.
- 012345 TTTu

(@) (b)

The exponential signal x(n) = a"u(n) (a), and the ROC of its z-
transform (b).

1

g ROC: |z| > |af

x(n) =a"u(n) <= X(z) =
The ROC is the exterior of a circle having radius |e|. Figure 3.1.2 shows a graph of the signal
x(n) and its corresponding ROC. Note that, in general, @ need not be real.
If we set @ = 1 in (3.1.7), we obtain the z-transform of the unit step signal

1

x(n) = uln) < X(z) = —

ROC: |z] > 1




Example

Determine the z-transform of the signal
x(n) = —a"u(-n—-1) = . wei
Solution. From the definition (3.1.1) we have

-1 0
X@ =) (-a"z"=-) ("2
n=—o00 =1

where [ = —n. Using the formula

A
A+A2+A3+---=A(l+A+A2+---)=ﬁ

when |A| < 1 gives

a1z 1

X(z) = — =
@ l—alz 1-az”!
provided that |o~'z| < 1 or, equivalently, |z| < |e|. Thus
x(n) = —a"u(—n —1) <= X(z) = w—41—, ROC: |z]| < |a]
1-az!

The ROC is now the interior of a circle having radius |«|. This is shown in Fig. 3.1.3.




Im(z)

x(n)

Re(z)

(a) (b)

Anticausal signal x(n) = —a"u(—n — 1) (a), and the ROC of its
z-transform (b).




Example

Determine the z-transform of the signal
x(n) =a"u(n)+b"u(-n-1)
Solution.  From definition (3.1.1) we have
00 -1 %0 o0
X@=) a7+ ) bz =) @) +) (672
n=0 n=—00 n=0 I=1

The first power series converges if [z ~!| < 1 or |z| > |e|. The second power series converges
if |b71z] < 1 or |z] < |b|.
In determining the convergence of X (z), we consider two different cases.




ROC for z-transform in
Example 3.15.

Case 1 |b] < |e|: In this case the two ROC above do not overlap .
Consequently, we cannot find values of z for which both power series con-
verge simultaneously. Clearly, in this case, X (z) does not exist.

Case 2 |b| > |a|: In this case there is a ring in the z-plane where both power series converge
simultaneously, as shown in Fig. 3.1.4(b). Then we obtain

1

1
X@=1z az!  1-bz?

_ b—a
T a+b-z—abz!

The ROC of X(2) i |a < |z| < |b].




Properties os the z-Transform

TABLE 3.2 Properties of the z-Transform

Property Time Domain _ z-Domain ROC
Notation x(n) X(z) ROC:r <zl <n
xi(n) Xi(2) ROC;
x2(n) Xa(2) ROC;
i aarits ayxy(n) + a X1(2) + a2Xa(2) At least the intersection of
e @ o ROC; and ROCy
shiftin; x(n—k) X (2) That of X (z), & tz=0if
TciSIEEE k>0andz=oc0ifk <0
Scaling in the a"x(n) X(@'2) lalrz < |z] < laln
z-domain
Time reversal x(—n) x@ ™" L<p<i
Conjugation x*(n) X*(z" ROC
Real part Re{x(n)) HX@ + X)) Includes ROC
Imaginary part Im{x(n)} Lilx@ - x*@") Includes ROC
3 PO dX(z
Differentiationin  nx(n) _27!_1 r <zl <r
the z-domain 2z .
Convolution xi(n) % x2(n) X1(2)X2(2) At least, the intersection of
ROC, and ROC;
Correlation Ing®= Ry (2) = X1 (@) X2(z7Y) At least, the intersection of
x1(l) * x2(—1) ROC of Xi(z) and Xa(z™")
Initial value If x(n) causal  x(0) = lim X (2)
theorem L
Multiplication x1(n)xz(n) Z_L‘fbx. W)Xz (2) vt dv At least, ryry < |z] < rur

o
Parseval’s relation E x1(n)x3(n) = #jﬁxl(u)x’;(llu‘)u'ldﬂ

a=—cc




z-Transform of Basic Signals

TABLE 3.3 Some Common z-Transform Pairs

Signal, x(n) z-Transform, X (z) ROC
1 8(n) 1 All z
2 u(n) 1——1Z_T lz] > 1
3 a"u(n) i—_laz—q- |z > |al
4 na"u(n) az”! |z > lal
(1—az™!)?
5  —a"u(-n-—1) ﬁf lz| < lal
<1
6 —na"u(-n-1) (—l—fa—zz—_-r)-; |z] < lal
1- -1
7 (coswomu(n) - Zz_fcoscz;“: e Jz| > 1
. ~sin
8  (sinawon)u(n) = 22z‘1 cclbs:ﬁ+ =) Jz] > 1
R 1—az'cosay
9 (a" coswon)u(n) T =20 cosan 40722 |z] > |a]
=1 _:
10 (a" sinwon)u(n) #,M-ﬁ lz| > lal

cosay +a“z”




Pole-zero location

X = BQ _bo win G2 z) - 2m)
A@@) ao (z—p)z—=p2)--- (2= pN)




Example of first order system

Determine the pole-zero plot for the signal
x(n) = a"u(n), a>0

Solution. From Table 3.3 we find that
fl,
,  ROC:|z| >a

Z
X = ——=
@ l—az"! z-—-a
Thus X (z) has one zero at z; = 0 and one pole at p; = a. The pole-zero plot is shown in
Fig. 3.3.1. Note that the pole p; = a is not included in the ROC since the z-transform does
not converge at a pole.

Im(z)

Re(z)

Pole-zero plot for the
causal exponential signal
x(n) = a"u(n).




Time Domain Behaviour

Time-domain behavior of a single-real-pole causal signal as a function of

the location of the pole with respect to the unit circle.

x(n)

z-plane

*

x(n)

z-plane
E |

x(n)

[Mrree .

|
i

z-plane

z-plane

<P
@ -




System Function of LTI Systems

Y(z) = H(z) X (2)

Y (2)
X (2)

Hig)=

H(z) = Z h(n)z™"

n=-—00




System Function derived from
Difference Equation

N M
y(n) ==Y _ary(n —k)+ ) _ bix(n — k)
k=1 k=0

N

M
Y(z) = — > ar¥Y(@z % + D> b X(2)z7*

k=1 k=0

N M
Y(z) (1 + Zakz—") = X (2) (Zj bkz—")

k=0




System Function of FIR System

»let ar=0forl <k <N

M

M
] ;
H@) =) b =53 bt
k=0 k=0

» Then:

There is no pole except at zero.




Example

Determine the system function and the unit sample response of the system described by the
difference equation

ik
y(n) = iy(n - 1)+ 2x(n)

Solution. By computing the z-transform of the difference equation, we obtain

Y(z) = %z'll’(z) +2X(z)

Hence the system function is
i S

AO=¥0 = 1=

This system has a pole at z = 1 and a zero at the origin. Using Table 3.3 we obtain the inverse
transform

1
h(n) = 2(5)"u(n)

This is the unit sample response of the system.




Inversion of z-Transform
1. Direct evaluation of by contour integration.
x(n) = : 5£X( 2" ld
- 2nj JC - .

2. Expansion into a series of terms, in the variables z, and z7'.

3. Partial-fraction expansion and table lookup.




Inverse z-Transform by Power Series
Expansion

The basic id EXAMPLE

correspondii ' .
Determine the inverse z-transform of

1
X =
which conve (2) 1—-15z"140.5z72

x(n) = ¢, for
division. when

(a) ROC: |z] > 1
(b) ROC: |z] < 0.5




Example

Determine the inverse z-transform of

X =
@ = T 15T 5052

when
(a) ROC: |z] > 1
(b) ROC: |z| < 0.5

-




Solution (a)

(a) Since the ROC is the exterior of a circle, we expect x(n) to be a causal signal. Thus we
seek a power series expansion in negative powers of z. By dividing the numerator of
X (z) by its denommator we obtain the power series ‘

1 T 5 15 5 8.,

: iy
1—%2_1-{-%2_2—1"-52' +ZZ +'§Z +EZ % o

Wi

X(2) =

By comparing this relation with (3.1.1), we conclude that

37 15 31

m =328 16"




Solution (b)

(b) In this case the ROCis the interior of a circle. Consequently, the signal x(n) is anticausa’
To obtain a power series expansion in positive powers of z, we perform the long divisio
in the following way:

222 + 62° + 14z° 4+ 302° + 622° + - .
1?3741 )1

1-3z4272
3z —27°
3z — 922 + 62°
7% — 67°
722 - 212° +14¢°
157% — 147°
1523 — 45z* + 307°
317* - 307°
Thus
X(2) = = 8 =272+ 627 + 142 +302° + 625 + - -

1- EZ_I + %Z_z
In this case x(n) = 0 for n > 0. By comparing this result to (3.1.1), we conclude that

x(n) ={---62,30,14,6,2,0,0}




Example

Determine the inverse z-transform of
X (z) = log(1 +az™"), 12| > |al

Solution.  Using the power series expansion for log(1 + x), with |x| < 1, we have

00 —1yrtlgn,—n
X(z)=z( L 03

n

n=l

Thus

x(n) = { (_I)HHC:T”' nzl
0, n<0

Expansion of irrational functions into power series can be obtained from tables.




Inversion using partial-fraction
expansion

Let X (z) be a proper rational function, that is,

B B(z) _ b0+b12_1 doontbyyzM
A)  l+azl'+---+awz=V

X(z)
where
ay #0 and M <N

To simplify our discussion we eliminate negative powers of z by multiplying both the
numerator and denominator of (3.4.12) by zV. This results in

bozN + bV 1o L by M
Nt+azV-1+---+ay

X@) =

which contains only positive powers of z. Since N > M, the function

X(z)  bozN '+ bV 4 by M
z N 4aizVN-14--.+ay
is also always proper.




Inversion using partial-fraction
expansion

Our task in performing a partial-fraction expansion is to express This
as a sum of simple fractions. We distinguish two cases.

Distinct poles. Suppose that the poles pi, p2, ..., py are all different (distinct).
Then we seek an expansion of the form

X(z A A A
@) _ .. IO .

Z zZ— P Z—p2 Z— PN

The problem is to determine the coefficients A;, As, ..., Ay. There are two ways to
solve this problem, as illustrated in the following example.




Example

Determine the partial-fraction expansion of the proper function

1
— 1527140522

X(z) = i

Solution.  First we eliminate the negative powers, by multiplying both numerator and de-
nominator by z2. Thus
2
z
X(2) = e
i T

The poles of X (z) are p1 = 1 and p; = 0.5. Consequently, the expansion is

X(z) z A N A;
z  (—-1@z-05 z-1 z-05

A very simple method to determine A; and A; is to multiply the equation by the denominator
term (z — 1)(z — 0.5). Thus we obtain

z=(z—-05A +(z— DA




Solution (Continued)

Now if we set z = p; = 1 in (3.4.18), we eliminate the term involving A,. Hence
1=(1-05A4A,

Thus we obtain the result A; = 2. Next we return to (3.4.18) and set z = p, = 0.5, thus
eliminating the term involving A, so we have

0.5=(0.5-1)A;
and hence A, = —1. Therefore, the result of the partial-fraction expansion is
X(@) _ 2 1

z z—-1 2z-05




General Partial-Fraction Expansion
Procedure (Single Poles)

The example given above suggests that we can determine the coefficients Ay,
Az, ..., Ay, by multiplying both sidesby each of the terms (z — pe). k=1,2,..., N,
and evaluating the resulting expressions at the corresponding pole

positions, pi, pa2, ..., pny. Thus we have, in general,
z2—p)X(z Z— pr)A Z— pr)A
(z — pi) ()=( Pk) 1+"'+Ak+"'+( P)AN
< i—p1 = PN

Consequently, with z = py, (3.4.20) yields the kth coefficient as

A= EZPOX@1 s N

. z=px




Example

Determine the partial-fraction expansion of
1+z!
X)) = ——————
&= 052

Solution.  To eliminate negative powers of z we multiply both numerator and
denominator by z2. Thus
X@ _  z+1
z 2 —2405

The poles of X(z) are complex conjugates

1+_1
PI—2 "2
pz—l j1
and 2 2
Thus X(2) z+1 Ay A;
— — -+
z @—-p)z—p2) z—-p 2—p2
we obtain
AI_(Z—PI)X(ZJ _z+l T+it+1 1 3
= = = . =--jz
z cwm 2 Plapy 3Hii-d4+iz 2 72
4, = EPIX@ z+1 o d-iz+l _‘+,-3
z =Py, 3-Jz-3-J7 2 72




Multiple Order Poles (Example

D ine the partial-fracti ion of

X@= (3423

1
14z Hd -2y
Solution.  First, we express (3.4.23) in terms of positive powers of z, in the form
X@) _ il
z  @+1Mz—1)?
X(z) has a simple pole at py = —1 and a double pole p; = p; = 1. Insuch a case the
appropriate partial-fraction expansion is
X@ & AL A A
T T Gehe-E i+l ti-1 oy 2

The problem is to determine the coefficients A;, Az, and A;.
‘We proceed as in the case of distinct poles. To determine A;, we multiply both sides of
(3.4.24) by (z + 1) and evaluate the result at z = —1. Thus (3.4.24) becomes

e+ 1)X@ z+1 z+1
Z _m+z—142+(z—1)143

which, when evaluated at z = -1, yields

(z+1X(2) 1
PR i ==
z 4

Ay

Next, if we multiply both sides of (3.4.24) by (z — 1)?, we obtain

z—172X(2)

1
i) P (3.4.25)
z z+1

Now, if we evaluate (3.4.25) at z = 1, we obtain A3. Thus
_ == l)ZX(z)|
z =1

1

Az 3
The remaining coefficient A; can be obtained by differentiating both sides of (3.4.25)
with respect to z and evaluating the result at z = 1. Note that it is not necessary formally to
carry out the differentiation of the right-hand side of (3.4.25), since all terms except A, vanish

when we set z = 1. Thus R
d [z=1°X@ 9
Apm = | 22 TR0 == .4.26
T [ z ]z_, 4 (426)




General Partial Fraction Expansion
Procedure

The generalization of the procedure in the example above to the case of an mth-
order pole (z — py)™ is straightforward. The partial-fraction expansion must contain

the terms

A A A
LI 2% R mk _
z=p (=) (z—pw)

The coefficients {A;;} can be evaluated through differentiation




Causality and Stability

» Asystem is causal if,
» h(n)=0forn<0

» So, an LTI system is causal if and only if the ROC of H(z) is exterior of a cirle
radius r < oo.

» An LTI System is BIBO stable if the unit circle lies in the region of convergence
of H(z).




Causality and Stability (Example)

A linear time-invariant system is characterized by the system function

3—4z1
1-35z"1+1.5z2

__ 1
N 1- %z—] 1-3z"1

H(Z) =

Specify the ROC of H(z) and determine 4(n) for the following conditions:
(a) The system is stable.

(b) The system is causal.

(¢) The system is anticausal.




Causality and Stability (Example)

Solution.  The system has poles at z =  and z = 3.

(a) Since the system is stable, its ROC must include the unit circle and hence it is % <zl <3
Consequently, #(rn) is noncausal and is given as

1
h(n) = (5)"u(n) -23)"u(-n —1)
(b) Since the system is causal, its ROC is |z| > 3. In this case
1
h(n) = (5)"u(n) +2(3)"u(n)

This system is unstable.
(¢) If the system is anticausal, its ROCis |z| < 0.5. Hence

1
h(n) = —[(5)" +2(3)"Ju(=n - 1)

In this case the system is unstable.




One-sided z-Transform

The one-sided or unilateral z-transform of a signal x(n) is defined by

We also use the notations Z*{x(n)} and

) S X+




ded z-Transform (Examples)
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One-sided z-Transform (Properties)

Shfiting Property
Case 1: Time delay If

x(n) <5 X*(2)

then X
x(n —k) -8 KX+ Zx(—n)z"], k>0 (3.6.2)

n={

In case x(n) is causal, then
s
x(n—k) <> z7¥Xx*(2) (3.6.3)

Proof From the definition (3.6.1) we have

-1

ZHx(n— b)) =z L): xz™ + Zx(l)z-']
=0

=—k

—k

=% [Z x(hz™ + X+(Z)]

I=—1

By changing the index from [ to n = —[, the result in (3.6.2) is easily obtained.




Example

Determine the one-sided z-transform of the signals
(@) x(n) =a"un)
(b) x;(n) = x(n —2) where x(n) = a"

Solution.
(a) From (3.6.1) we easily obtain

X*z) =

1-az!
(b) We will apply the shifting property for k = 2. Indeed, we have
ZHx(n — 2)} = 2 [X+(2) + x(=1)z + x(-2)z?]
=272X* (@) + x(=Dz7 + x(=2)

Since x(—1) =a~', x(=2) = a~%, we obtain

+ _ <
Apia= 1—-az!




Properties (Time Advance)

Case 2: Time advance If

x(n) <> X+ ()

then

k=1
x(n+k) &y [x’r(z) - Zx(n)z'"] . KD (3.6.5)
n=0

Proof From (3.6.1) we have

o0 [+ o]
ZHx(n+k)} = Zx(n +k)z " =7 Zx(l)z_"

n=0 =k

where we have changed the index of summation from n to / = n + k. Now, from

(3.6.1) we obtain
=] k-1 =)
X*@ =) xO =) x0z + Y xz
1=0 1=0 I=k

By combining the last two relations, we easily obtain (3.6.5).




Example (Time Advance)

With x(n), as given in Example 3.6.2, determine the one-sided z-transform of the signal
x2(n) = x(n +2)
Solution. 'We will apply the shifting theorem for k = 2. From (3.6.5), with k = 2, we obtain
ZHx(n +2)} = 22X+ (2) — x(0)* — x(1)z
But x(0) =1, x(1) = a,and X*(z) = 1/(1 —az™!). Thus

22

2
pp— az

ZHx(n+2)} =




Properties (Time Advance)

With x(n), as given in Example 3.6.2, determine the one-sided z-transform of the signal
x2(n) = x(n +2)
Solution. 'We will apply the shifting theorem for k = 2. From (3.6.5), with k = 2, we obtain
ZHx(n +2)} = 22X+ (2) — x(0)* — x(1)z
But x(0) =1, x(1) = a,and X*(z) = 1/(1 —az™!). Thus

22

2
pp— az

ZHx(n+2)} =




Final Value Theorem

Final Value Theorem. If
+
x(n) <— Xt(2)

then
Iingo x(n) = liml(z - 1X*(2) (3.6.6)
n— —

The limit in (3.6.6) exists if the ROC of (z — 1) X*(z) includes the unit circle.

The proof of this theorem is left as an exercise for the reader.

This theorem is useful when we are interested in the asymptotic behavior of a
signal x(n) and we know its z-transform, but not the signal itself. In such cases,
especially if it is complicated to invert X *(z), we can use the final value theorem to
determine the limit of x(n) as n goes to infinity.




Final Value Theorem (Example

The impulse response of a relaxed linear time-invariant system is A(n) = a"u(n), |a| < 1.
Determine the value of the step response of the system as n — oco.
Solution.  The step response of the system is
y(n) = h(n) * x(n)
where
x(n) = u(n)

Obviously, if we excite a causal system with a causal input the output will be causal. Since
h(n), x(n), y(n) are causal signals, the one-sided and two-sided z-transforms are identical.
From the convolution property (3.2.17) we know that the z-transforms of 4(n) and x(n) must
be multiplied to yield the z-transform of the output. Thus

1 1 _ z
—az'1-z1 @z-D(@Ez—-a)’

Y(z) = 1 ROC: |z| > ||
Now
2
z—-1DY(@) = y ROC: |z] < ||
I—a
Since |a| < I, the ROC of (z — 1)Y(z) includes the unit circle. Consequently, we can apply

(3.6.6) and obtain

2
. 5 z 1
lim y(n) = lim =
n—co =1z —a l—a




