Lecture 4

Discrete Fourier Transform (DFT)
and its implementation: Fast Fourier
Transform (FFT)




Frequency Domain Sampling

» Consider an aperiodic discrete-time signal x[n] with Fourier Transform

X (0) = Z x(n)e /"

n=-—0oc

» Assume that we take samples of the spectrum spaced éfw
X(w)

ﬁ_bw

- 0 kéw 1éwF 27




Frequency Domain Sampling

> Let: @ = 2wk /N then:

(2T Zoo 2k

Sub-dividing the summation, we have:

-1 N-1
21 ; .
(574 3 o L _

2N-1
+ Z x(n)e—]Zﬂkn/N_l_...
=N

oo IN+N-1

— Z Z x(n)e—jZJrkn/N




Frequency Domain Sampling

If we change the index in the inner summation from n to n — /N and interchange the
order of the summation, we obtain the result

N-1 o0
((50)-E[£ -]

n=0 Li=-00
fork=0,1,2,...,N—1.
The signal o0
Xp(n) = Z x(n—1IN)
I=—00 \




DFT

» The coefficients are:

N-1
—_——Zx (n)e™ FamkoiN k=0,1,..., N—-1

» It is easy to see that

1 2
= —X|—k k=0,1,...,N—1
Y (N)

» Therefore,

N-1

x(n)—lzx(z—”k)eﬂ"’ml” n=0,1 N -1

P -N N ] =y Ly ey
k=0

» 50, x,(n)can be recovered from Samples of X (w)

if there is no aliasing in the time domain,

x(n) = xp(n), O<n<N-1

1
x(n)—EZX(——k) JERERIN 0<n<N-1




DFT Pair

» So, we have DFT and Inverse DFT defined as:
N-1
DET: X&) =) xz@me ¥, §=0,1,2,..
=0

N-1
IDFT: x(n) = -11\7 Z X el n=0,1,2,...
k=0




DFT: Example

A finite-duration sequence of length L is given as

0O<n=slL-1

x(n) = [ L
0, otherwise
Determine the N-point DFT of this sequence for N > L.

Solution. The Fourier transform of this sequence is

L-1
X(w) = E x(n)e ion
n=0

— Ze_j" — 1 p—, e—jﬂ’L _ Sil.l(wL/z) e-lw(L—l)ﬂ
s 1—eJo sin(w/2)

The magnitude and phase of X (w) are illustrated in Fig. 7.1.5 for L = 10. The N-point DFT
of x(n) is simply X (w) evaluated at the set of N equally spaced frequencies wx = 2nk/N,
k=0,1,...,N - 1. Hence

e—ijkLM
X = ——maw

— M,—mu-xw
sin(wk/N)



DFT: Example

Figure 7.1.5

Magnitude and phase
characteristics of the
Fourier transform for signal
in Example 7.1.2.

-x




DFT as a Linear Transformation

» Let
WN - e—jZﬂ.’/N

» Then,
>

N-1
X(ky=>) xmW, k=01,....N—1

n=0

N-1
x(n)=%ZX(k)W_k", n=01...,. N—-1
k=0




DFT as a Linear Transformation

» Define - X (0) X (ﬂ)
x(1) X
Xy = ; 5 Xy = )
Lx(N —1) X(N-—-1
F 1 1 .. 1 8
1 Wy w2 ... wi
2(N-1
Wy = W,% Wf\‘r WN( y
1 W,{,;’“ WI:.:’EN—1 Wﬁ,”‘i)‘"‘”
»  Then, the DFT and IDFT can be expressed as: Note that
> DFT W
XN = WNXN
» IDFT 1

Xy = WK,IXN = NW;:IXN




Example

Compute the DFT of the four-point sequence
x(my=(0 1 2 3)

Solution.  The first step is to determine the matrix Wy. By exploiting the periodicity property
of W, and the symmetry property W;+N/2 =W}

Cwe oW ow) w{7 T 1 1 1-
W, — w2 wg Wi owp _ (1 wp W oW}
w) wi wi wf 1 W W) W
L w)owp owd owyl L1 owlPowRowl
"1 1 1 17
1% sf =1l J Then
Sl -1 1 -1 A
|1 -1 —j_ —242j
J ] X, = Waxe _21




Relationship Between DFT and z-Transform

Let us consider

with an ROC that includes the unit circle.

X (k)

X ()| ,=ejznnkn k=0,1,...,N—-1

oC
Z x(n)e~i2Tk/IN

n=-0oc

then
X(k) = X(Z)|z=ej2nnk/fv, K= 0, 1, 5 & o N-1

oc
- Z x(n)e—jZJmk/N

n=-—0c




Relationship Between DFT and z-transform

If the sequence x(n) has a finite duration of length N or less, the sequence can
be recovered from its N -point DFT.

N-1 N-1T 4 N-I
X)) = Zx(n)z_" = Z [-N- Z X(k)ejz"k"/N] "
= n=0 =0
| V-1 N-1 . k A7
X@)=— Y X)) (eNz-
PRLIN )

1—zN ”Z‘:l X (k)

X(2) = N 1 — eJ2nk/N -1

k=0
When evaluated on the unit circle,

] — e~ JoN N1 X (k)

— p—Jj(w=2mk/N)
N k=nl e

AAD) =




Properties of DFT

N-1
DFT: X(k)=Zx(n)W"", k=0,1,...
=(

1N—l
DFT: =— Y X)Wy, =0,1,...,N -1
I x(n) Ng K)Wy n N

. where Wy is defined as
WN ot j2n /N



Properties of DFT
Periodicity. If x(n) and X(k) are an N-point DFT pair, then

x(n+ N) =x(n) for all n

Xk+N)=X(k for all &
Linearity. If : ; V)

xi(n) <> X1 (k)
and -
x2(n) <> Xa(k)

then for any real-valued or complex-valued constants a; and a3,

axi () + axmn) S aXi(k) +aXa(k)
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Properties of DFT: Circular Symmetries

4
x(n) 4
2]’ ] x(1)
1 T .
0o 1 2

® X2) K0 @
xy(n) | 4‘ 3 4[ | 4l
2 2 2
' I ] A I [ '1 T I - x(3) -
-4 -3 -2-1 0 1 2 3 4 5 6 17
(b) Circular shift of a sequence.
xn-2) 4 4 i
I l 2 I [ 3I [ x'(n) = x(n — k, modulo N)
l"L I 31 T2 I 4 n
-5 4 =3 =2 - 5
(©) = x((n - k))N
x'(n)




Properties of DFT: Circular Convolution

N-1
Take, X&) = Z x1(n)e I2mnkIN A ¢ A

n=0

and B .
X5 (k) = Z Kolm)g 12NN k=01,...

n=0
Multiply the two to get,

X3(k) = X1(k)X2(k), k=0,1,...

, N-1
IDFTiS, 4, (m) = % 3 Xa(kye 2k
k=0

1 N-1 _
= = Y X1(k) X (k)el2mkm/N




Properties of DFT: Circular Convolution
Suppose that we substitute for X(k) and X, (k) we obtain

N-1[N-1 N-1
1 ' . )
s = B[S ][5 ]

k=0 Ln=0 1=0

— i2mk(m—n—1)/N
=3 x1(n) Z xz(l)[z e’ ]

n=0 =0 k=0

The inner sum in the brackets has the form

NZI* IN a=1
a l—a
— T4 fek]

where ¢ is defined as
- ejZn(m—n—l)/N




Circular Convolution

We observe that a = 1 when m —n —[ is a multiple of N. On the other hand, a" =1
for any value of a # 0. Consequently,

N-1
k N, I=m-—n+pN = (m-—n))y, paninteger
0, otherwise

If we substitute the result in x3(m) , we obtain the desired expression
for x3(m) in the form

N-1
x3(m) = le(n)xg((m —n))n, M=01 ... N =1

The expression has the form of a convolution sum. However, it is not
the ordinary linear convolution that was introduced in Chapter 2, which relates the
output sequence y(n) of a linear system to the input sequence x(n) and the impulse
response h(n). Instead, the convolution sum in involves the index ((m —n))y
and is called circular convolution. Thus we conclude that multiplication of the DFT
of two sequences is equivalent to the circular convolution of the two sequences i

4l bicman Aawandia




Properties of the DFT

Property Time Domain Frequency Domain
Notation x(n), y(n) X (k), Y (k)
Periodicity x(n)y=x(n+N) Xk)=Xk+N)
Linearity aixy(n) + axx2(n) a1 X1(k) + ar X>(k)
Time reversal x(N —n) X(N =k)
Circular time shift x((n — D)n X (k)eJ2mki/N
Circular frequency shift xlnyel i Xtk —Dix
Complex conjugate x*(n) X*(N —k)
Circular convolution x1(n) @ x;(n) X1(k) X (k)
Circular correlation x(n) @ y*(—n) X (k)Y*(k)
Multiplication of two sequences x1(n)x2(n) %X (k) ™ X2(k)
N-1 y Al
Parseval’s theorem Z x(n)y*(n) N Z X(k)Y* (k)

n=0 k=0




Properties of DFT

» Special case of Parseval’s Theorem,

» When y(n) = x(n)

N-1 1 N-1
Dl == XM
n=>0 k=0

» This means that it does not matter whether you compute energy in time-
domain or frequency-domain.




Linear Filtering using DFT

x(n) =0, n<0andn >
h(i) =10, n<Q0andn >
» The output y[n] will be, M—1
(n) =Y h(k)x(n —k)
e={)

With duration L, + M — 1.

In frequency domain, we have,

Y(w) = X(w)H (w)




Linear Filtering using DFT: Example

Let, Y (k) = Y (0)|lw=2nk/N> k=01,...,N—-1
=X(w)H(w)|w=27tk/Ns k=0s 1"-"N_]-

» Then,

Y(k) = X(k)H (k), k=0,1.::; N=1

» Where

i E

{X (k)} and {H (k)} are the N-point DFTs of the sequences x(n) and h(n)

» Example: Find the response of hA(n) = {%, 2,3} to x(n) =(1,2,2,1)
T




Linear Filtering using DFT: Example
Let, N=L+M-1=4+3-1=6.

:
Then, X(k) =) x(n)e i2rkn/8
n=0

ST ol oW, T L RN L k=0,1,...,7
» We have,

b R 342 ,(4+3J§)

=

z 2
XQ2) =-1-j, X(3)=2_2‘/i+j(4"23“/§)
X@) =0, XG5 = 2"2“/5 ~ (4 "23‘/5)

X6 =-1+j, X7 =

2 2

2++2 _(4+3«/§)
+J



Linear Filtering using DFT: Example

:
For H[K], Hk) =) h(n)e~/2mkn/®
n=(0)

=1+ 2e—j7rk/4 + 3e—j7rk/2

> 30, H(0) = 6, H(1)=1+~/§-—j(3+\/§), HQ)=-2—j2
H(3)=1—\/§+j(3—\/5), H@4) =2
H(5)=1—-«/§——j(3—«/§), H6) = -2+ j2

HN =1+v2+j(3++2)




Linear Filtering using DFT: Example

Multiplying X[k] and H[K], we get

Y(0) = 36, Y(1) = —14.07 — j17.48, Y(2) = j4, Y(3) = 0.07 + j0.515
Y(4) =0, Y(5) =0.07 — j0.515, Y (6) = —j4, Y(7) = —-14.07 + j17.48
Finally, the eight-point IDFT is

7
y(n) = Z: Y (k)e/ 2 ka8 n=01,...,7
k=0

This computation yields the result

y(n) = {%, 4,9,11,8,3,0,0)

We observe that the first six values of y(n) constitute the set of desired output values.
The last two values are zero because we used an eight-point DFT and IDFT, when, in fact, the
minimum number of points required is six.




Aliasing in DFT

We needed N to be at least L+M-1. In the example, we had to have N at least 6 \
and we used N=8 and it worked. Now let’s use N=4: 0

3
H(k) - Zh(n)e—ﬂn’knﬂ
n=0

HK) =1 + 2~ I7k2 4 3¢=Jkn k=0,1,2,3

Hence

H{0) =6, H(1)=-2-j2, Hi{Z) =2, H3)=-2+j2
The four-point DFT of x(n) is
X(k) =142 ™2 4 2e=J7k 4 1¢=737k12 £ =0,1,2,3

Hence
X(0) =5, X1)=-1-j, X2y =10, X@3)=-1+4+j

The product of these two four-point DFTs is

Vi — 24 Vi — A vy —n Vi — A



Aliasing in DFT

3
_ . 1 . & 1 ~ j
The 4-point IDFT gives: 5(n) = Zzy(k)eﬂn’m/d’ i=0,1,2.3
k=0

= %(36+ jaeT™ 2 — jael 2
» So, we have:
y(n) = {?,7, 9,11}

» We see that y[4] is aliased with y[0] and y[5] is aliased with y[1]:

y0)=y0)+y@) =9 ) =y + yGB) =7
and the other two terms are ok: y2) =y(2) =9

Y@ =y3 =1




Filtering of Long Data Sequences

Usually, we need to process very long sequences of data. So, we need to cut the
sequence into a large number of blocks, each of a reasonably short length N and
find N-point DFT’s and combine them. There are tw wasy to do this:

1) Overlap-Save Method,
2) Overlap-Add Method.

Overlap-save method. In this method the size of the input data blocks is N = L +
M —1 and the DFTs and IDFT are of length N. Each data block consists of the last *
M —1 data points of the previous data block followed by L new data points to forma |
data sequence of length N = L+ M —1. An N-point DFT is computed for each data
block. The impulse response of the FIR filter is increased in length by appending
L — 1 zeros and an N -point DFT of the sequence is computed once and stored. The
multiplication of the two N-point DFTs {H (k)} and {X,,(k)} for the mth block of

data yields X
Yiu(k) = H(k)Xp(k), E=0s1;,0:, N =1



Overlap-Save Method

Then the N-point IDFT yields the result

V(1) = Gm@Im (1) - I (M = D)I(M) - - - 5(N = 1)} |

Since the data record is of length N, the first M — 1 points of y, (n) are corrupted by
aliasing and must be discarded. The last L points of y,,(n) are exactly the same as
the result from linear convolution and, as a consequence,

Ym() = yu(n),n=M,M+1,...,N -1 \

To avoid loss of data due to aliasing, the last M —1 points of each data record ar
saved and these points become the first M — 1 data points of the subsequent record
as indicated above. To begin the processing, the first M — 1 points of the first record
are set to zero. Thus the blocks of data sequences are

x1(n) ={0,0,...,0,x(0), x(1),...,x(L — 1)}

M~—1 points



| -

Input signal | L

Overlap-Save Method %
xi1(n) = (0,0, ...,0,x(0), x(1), ..., x(L — 1)} ! , 1
M~1 points //Z x,(n) %
x2(n)={x(L-M+1),...,x(L =1),x(L),...,x2L — 1)} M- | L
M—1data poi:ts from xq (n) L new d:ta points ZEros ‘:‘d_lﬁ ]
x3(n) = {xQL - M +1),...,x2L —1),x2L), ..., x(3L — 1)} 7, o W
M~1 data po;ts from xp(n) L new d;ta points /A C ///
» and so on. Output signal Y v
% x3(n)
: ; g - 7 Z
The first M — 1 points are discarded due to aliasing and % »(n)
the remaining L points constitute the desired result o d/
. . 1scar
from linear convolution. M—1 Ya(n)
points /
Discard 7
M-1 7R
points rd

Discard
M-1



Overlap-Add Method

In this method the size of the inout data block is L points and the size of the DFTs
and IDFTis N = L+ M —1. To each data block we append M —1 zeros and
compute the N-point DFT. Thus the data blocks may be represented as

x1(n) = {x0),x(1),...,x(L — 1),9, o,..., 01

E

M~—1 zeros
xo(n) = {X(L), 2L+ 1);4:., 2QL—1),0,0,...,0)
) M—lvzeros J
x3(n) = {x(2L),...,x(3L - 1),0,0,...,0}
L M-—lvzeros ’

and so on. The two N-point DFT's are multiplied together to form
Yalk) = HE)X, k), E=0 1 pxen i —1

The IDFT yields data blocks of length N that are free of aliasing, since the size of
the DFTs and IDFT is N = L + M — 1 and the sequences are increased to N -points
bv annending zeros to each block.




Input data

e [ :;I =t L - : - L—-_‘
Overlap-Add Method
Since each data block is terminated with M — 1 zeros, | I
the last M — 1 points from each output block must be x,(n) %
overlapped and added to the first M — 1 points of N
M-
the succeeding block. Hence this method is called zeros
the overlap-add method. This overlapping and adding | 7
yields the output sequence = /<
y() = (y10), 311, ..., (L = D, (L) + (), (L +1) ]
Output data r
10, o N = 1)+ oM = 1), (M), .. e
yi(n) % //
b |
M z:d;:jmnts__ % Yo(n) A
together ‘ /
M-1 pomts_% y3(n) 7///

add




Efficient Implementation of DFT

The DFT and IDFT are given by,

N-1
X(ky=> x(mWy', 0<k<N-1
n=0
and, 1 N-1
- —nk _
x(n) = — Z;X(k)WN ., 0<n<N-1
where, Wy = e~ J2mIN
Wy has the following properties:

Symmetry property: N = —W}

Periodicity property: ~ WitN = Wk




Direct Implementation of DFT

For a complex-valued sequence x[n] the DFT and IDFT are is given by,
N-1

Xp(k) = Z [xR(n) coSs i + x7(n) sin 2nkn]
n=0
N-1
Xik) = — Z I:xR(n) sin —if — x7(n) cos 27rkn]
n=0

The direct computation requires:

1. 2N? evaluations of trigonometric functions.

2. 4N? real multiplications.
3. 4N(N — 1) real additions.
4. A number of indexing and addressing operations.




Splitting of the sequence

To simplify the task, we split x[n] into two sequences one consisting of the values
with odd index and the other consisting of even indexed values:

fi(n) = x(2n)

B =+ 1, n=o,1,...,-g’--1

N-1
X (k) = Zx(n)w"", k=0,1,..., N—1
=0

= Y xmWF + Y x(m)Wy"

n even n odd

(N/2)-1 (N/2)—1
— Z xm)WEmk 4 Z x(2m + 1)W,’f,(2m+1)
m=0 m=0




Splitting of the sequence

But, W{% = Wn)2

So, (N/2)—1 (N/2)-1
X(ky= Y AmWL+WE Y HmWy),
m=0 m=0

= Fi(k) + WEFR(k), k=0,1,...,N—1

where Fj(k) and F(k) are the N/2-point DFTs of fi(m) and fy(m),

Since Fi(k) and F,(k) are periodic, with period N/2, we have Fi(k + N/2) =

Fi(k) and Fy(k + N/2) = Fy(k). In addition, the factor Wi"/? = —wk
N

X (k) = Fy(k) + WS Fy(k), k=0, Lo,z -1
x(k+%’-) = Fi(k) — WS B(k), k=0,1,...,%-1



Splitting of the sequence

We observe that the direct computation of Fj(k) requires (N /2)? complex mul-
tiplications. The same applies to the computation of F,(k). Furthermore, there are °
N /2 additional complex multiplications required to compute Wy F,(k). Hence the
computation of X (k) requires 2(N/2)> + N/2 = N?/2 + N/2 complex multiplica-
tions. This first step results in a reduction of the number of multiplications from N?
to N?/2 + N/2, which is about a factor of 2 for N large.

We define: N
Gik)= Fi(k) k=0,1,...,5—1
X N
Gak) = Wy Fa(k), k=0,1,...,5 -1
The DFT can be expressed as:
N
X (k) = Gi(k) + Go(k), k=0,1,...,-—2——1
N N
X(k+5)=G1(k)—G2(k), k=0,1,...,5—1




Splitting of the sequence

x(0) x(2) x(4) x(N-2)
o .

x(1) x(3) N/2-Point

DFT

Fi0) Fy(1) Fi(2) ﬁ@_)

G (k)

e %ﬁ\ )

» X(N-1)
N




Splitting of the sequence

We can now further divide v11(n) = fi(2n), 7 ==Xl Towman % -1
N
vi2(n) = fi@2n+1), n=0,1,..., i 1
d:
o v21(n) = f2(2n), n=0,1,..., % —1
N
vmn) = HL2n+1), n=01,..., 5 -1
k N
Fi(k) = Vii(k) + Wy ,Via(k), k=0,1,..., T_l
N N
F (k-l- I)=V11(k)—Wf,/2V12(k), k=0,l,...,z—1
% N
Fy(k) = Var(k) + Wy , Vo (), k=0,1,..., i 1

N
Fz (k+—;|") =V21(k)—Wﬁ/2V22(k), k=0,...,7—1



Fast Fourier Transform (FFT)

x(0)
x(4)

x(2)
x(6)

x(1)
x(5)

x(3)
x(7)

2-point
DFT

2-point
DFT

Combine
2-point
DFT’s

2-point
DFT

2-point
DFT

Combine
2-point
DFT’s

Three stages in the computation of an N = 8-point DFT.

Combine
4-point
DFT’s

————e X(0)
——e X(1)
——e X(2)
———e X(3)
———e X(4)
———= X(5)
—e X(6)

—e X(7)




x(0) o

—e X(1)
x(4)

X(2)
x(2) o i
x(6) o Ny
x(1) » )
x(5) o §
x(3) ® -
x(7)




Fast Fourier Transform (FFT)

ae -0 A=a+b
Basic Butterfly:
: i Wy
be - B=(a—b)W

x(0) ® = = e X(0)
N XX
x(2) o — * X(2)

|

x(3) e X(6)
x(4) * X(1)
x(5) * X(5)
x(6) o * X(3)




Fast Fourier Transform (FFT)

Comparison of Computational Complexity for the Direct Computation of the
DFT Versus the FFT Algorithm

Number of ~ Complex Multiplications ~ Complex Multiplications Speed
Points, in Direct Computation, in FFT Algorithm, Improvement
N N? (N/2)log, N Factor
4 16 4 4.0
8 64 12 a3
16 256 32 8.0
32 1,024 80 12.8
64 4,096 192 21.3
128 16,384 448 36.6
256 65,536 1,024 64.0
512 262,144 2,304 113.8

1,024 1,048,576 5,120 204.8



