
Design of Digital Filters

Lecture 7



Outline of this Lecture

 In this lecture, we try to use the concepts we have learned in previous lectures to 
design different types of digital filters. By different type, we mean what range of 
frequencies they pass and what frequencies they reject, i.e., are they low-pass, high-
pass or band-pass, band-reject and so on. Also what is the ranges of frequencies they 
pass (pass-band), what range of frequencies they reject (stop-band) what is the 
transition band. Finally, how sharp is the transition from pass-band to stop-band and 
how-much ripple do we have in the pass-band and stop-band.

 First, we talk about causality, and the conditions for a system (filter) being being
physically realizable (causal) and the implications causality has, e.g., the relationship 
between the odd and event constituents of the filter and between the real and 
imaginary part of the filter’s spectrum (transfer function). 

 Then we talk about different techniques used for the design of FIR and IIR filters.

 Finally, we will talk about the ways to transform a prototype filter into different type 
of filters. This simplifies an engineer’s job by allowing design portability. Imagine 
designing a low-pass filter according to a set of criteria and then being able to change 
it into another low-pass filter with different frequency range, or even high-pass or 
band-pass filter with different frequency –domain characteristics. 



Causality

 Consider an ideal low-pass filter with the cutoff frequency 𝜔 :

 The impulse response is



Causality

 A plot of the impulse response is shown here:

It is obvious that the ideal low-pass filter is not causal.



Condition for Causality
 The question is: What is the condition that 𝐻 𝜔 need to satisfy in order for 

the filter to be causal?

 Paley-Wiener Theorem: If ℎ 𝑛 has finite energy and ℎ 𝑛 0,𝑛 0, then:

Conversely: if 𝐻 𝜔 is square integrable and 𝑙𝑛 𝐻 𝜔 𝑑𝜔 ∞ then, it is 
possible to associate a phase function Θ 𝜔 to the magnitude 𝐻 𝜔 to get: 

that is the frequency response of a causal filter ℎ 𝑛 with ℎ 𝑛 0,𝑛 0.
Note: Paley-Wiener condition implies that no filter whose 𝐻 𝜔 is zero over a 
finite band of frequency can be causal. Of course, 𝐻 𝜔 can be zero at some 
frequencies but not over a continuous band of frequencies (why?).



Implications of Causality
 We have talked about odd and even functions and the fact that any function 

can be written as the some of an odd and an even function:

 where:

 and,

 That is: 

 and



Implications of Causality
 If ℎ 𝑛 is absolute summable, i.e., BIBO stable, then 𝐻 𝜔 exists and we have 

𝐻 𝜔 𝐻 𝜔 𝑗𝐻 𝜔 . 



Causality: Example
 The following example clarifies the ideas presented in the previous slides.



Causality: Example
 Substituting:

 in

 we get:

 and 



Relationship Between and 
 Take the Fourier Transform of:

 to get 𝐻 𝜔 as twice the convolution of the Fourier Transforms of ℎ 𝑛 and 
the unit step 𝑢 𝑛 . We saw that: 

 so 

 where 𝑈 𝜔 is the Fourier Transform of 𝑢 𝑛 given as:

 Combining the two equations, we get a relationship 𝐻 𝜔 in terms of 𝐻 𝜔 :

 This is called the Hilbert Transform. 



Practical versus Ideal Filters
 The facts the:

 1) It is not possible to have infinitely sharp cutoff and,

 2) The spectrum cannot be zero over a contiguous band of frequencies,

 rules out the possibility of implementing Ideal Filters.

 So, the challenge is to design a filter that is a close as possible to ideal 
subject to constraints on implementation complexity, delay, etc.

 A realizable (causal) LTI filter can be characterized using a difference 
equation like:

 This implies that the transfer function is:



Practical versus Ideal Filters
 The magnitude plot of such a filter typically looks like:



Practical versus Ideal Filters
 The performance of a filter like the one shown in the previous slide is 

characterized by:

 Ripple in the pass band: 𝛿 ,

 Ripple in the stop-band: 𝛿 ,

 The cutoff frequency: 𝜔 , and,

 The transition band: the band of frequency between where the pass-band 
ends and where the stop-band starts: 𝜔 𝜔 .

 In the next few slides, we will discuss the different techniques for design of 
practical filters and compare them in terms of the tradeoff between the 
sharpness of the spectrum, i.e., the value of 𝜔 𝜔 and the ripple.



Design of FIR Filters Using Windowing
 We start with FIR filters. FIR filters are not only important as their own, but 

also they are important since any IIR filter, in practice can be approximated 
with an FIR filter with sufficient number of taps. 

 The most intuitive way to implement FIR filters is using windowing.

 Assume that we are asked to design a filter with the desired spectrum:

 𝐻 𝜔 ∑ ℎ 𝑛 𝑒 , where,

 Assume that we want to approximate it with an M-tap filter. The most simple 
thing to  do is to take the values of ℎ 𝑛 for values 𝑛 0, 1, … ,𝑀 1. That is 
just truncating the desired filter at point 𝑛 𝑀 1.



Design of FIR Filters Using Windowing
 This truncation is equivalent to using a rectangular window:

 to the desired filter, i.e., designing an FIR filter ℎ 𝑛 given as:

 The window function 𝑤 𝑛 has the spectrum:

 So, the spectrum of the FIR filter is: 



Design of FIR Filters Using Windowing
 In the case of rectangular window:

 So the window has a magnitude response of:



Design of FIR Filters Using Windowing
 The main-lobe is reduced as M increases (it is 4𝜋/𝑀), but the side-lobes 

remain unchanged.

 The rectangular window has the piece-wise linear phase:

 In the next slide, we present the expression for other windows, followed by 
some magnitude plot of some and a table comparing their characteristics.



Different filters for 
FIR Filter Design
 The table shows some of the known 

 window types.



Different filters for FIR Filter Design
 These Figures show the shape of some of the known filters:



Hanning Window
 This Figure presents the magnitude response of Hanning window for M=31 and 

M=61:

 We observe that unlike the rectangular window, in this case the reduction in 
main-lobe (as M increases) results in attenuation of sidelobes.



Hamming Window
 This Figure presents the magnitude response of Hamming window for M=31 

and M=61:

 In the case of Hamming Window also the reduction of the main-lobe comes 
with attenuation of the sidelobes.



Blackman Window
 This Figure presents the magnitude response of the Blackman window for 

M=31 and M=61:

 The same effect (sidelobes attenuation) is observed.



Characteristics of some Window Functions
 This table gives the frequency characteristics of some of commonly used 

windows in terms of the main lobe width and the sidelobe level:



FIR Design Using Window Functions: Example
 Assume we want to design the following low-pass filter:

 The unit sample function for this filter is:

 That is non-causal and of infinite duration.



FIR Design Using Window Functions: Example
 If we multiply ℎ 𝑛 by the rectangular window, we get:

 If M is odd, the center tap will be at 𝑛 𝑀 1 /2 and will have the value:

 That is non-causal and of infinite duration.



FIR Design Using Window Functions: Example
 These figures show the spectrum of the low-pass filter designed using 

rectangular window for M=61:

 and M=101:



FIR Design Using Window Functions: Example
 As stated before when we use a rectangular window we truncate the sample 

response causing abrupt change in time-domain. This results in noticeable 
oscillations around the band edges referred to as the Gibbs Phenomenon.

 To avoid these fluctuations, we should avoid the abrupt change in sample 
response by using a window that changes gradually. 

 Let’s compare filter designed using Hamming vs. rectangular window:



FIR Design Using Window Functions: Example
 Here we compare the rectangular window with Blackman and Kaiser:



FIR Design: Other Techniques
 In this lecture, we have only talked about filter design using 

windowing.
 We can also do the design by using the frequency samples of the 

desired spectrum. 
 Windowing and frequency-sampling methods have some limitations 

the most important of which is the lack of lack of control over the 
choice of band edges: Once you have chosen 𝑀 the values of 𝜔 and 
𝜔 are determined.

 Other techniques such as Chebyshev approximation technique can be 
used to alleviate this problem.

 Because of the time limitation, we do not discuss these other 
techniques. I believe that with what you have learned so far you can 
easily follow these topics in the text if you need it in the future. 



IIR Filter Design:
 Assume that you are given an analog filter and you are asked to design 

a digital filter to do the same job. The filter can be represent by its 
system function:

 or by its impulse response:

 Or by the differential equation:



IIR Filter Design:
 Using any of these three characterizations results in a different 

technique for converting this filter to a digital filter.

 In each case, we need to use a relationship mapping from s-plane to 
z-plane.

 Note that an analog filter is stable if all its poles are in the Left Half 
Plane (LHP) and a digital filter is stable if all its poles are inside the 
unit circle. So, any transformation should have the property:

 1) The 𝑗Ω axis in the 𝑠-plane should map into the unit circle in the 𝑧-
plane.

 2) The LHP of the 𝑠-plane should map into the inside of the unit circle 
in the 𝑧-plane.



IIR Filter Design:
 Based on the analog-domain characterization used, we have basically 

three techniques for analog domain to digital domain filter 
conversion:

 1) IIR Filter design using the Approximation of Derivatives: using the 
differential equation characterization.

 2) Impulse Invariance Technique: Using the impulse response 
characterization.

 3) Bilinear Transformation: Using the system function 
characterization.



Filter Design by Approximation of Derivatives
 We start with:

 and approximate the derivative as:

 Taking the transform, we get s . 

 For the second order derivative, we have: 

 or, equivalently:  

 In general:



Filter Design by Approximation of Derivatives
 So, the digital system function is found from the analog system 

function as:

 and approximate the derivative as:

 Note that 𝑠 means 𝑧 . 

 Let 𝑠 𝑗Ω, then: 

 Note that as Ω goes from 

 ∞ to ∞ the z-plane points 

 Are on a circle of radius ½ 

 centered around 𝑧 and 

 the poles confined to the 

 points inside only part of

 the unit circle.



Filter Design by Approximation of Derivatives
 The poles of the digital filter being confined to only a part of the unit 

circle makes the technique useful only for low-pass filters and high 
pass filters with low resonant frequency. To overcome this issue we 
can use more complex approximation for the derivative, for example, 
use:

 With the resulting mapping:

 When 𝑧 𝑒 , we get                        which is purely imaginary and 
gives us:

 By proper choice of 𝑎 it is possible to map the 𝑗Ω axis into the 
unit circle. So, it resolves the problem of poles but still the problem 
of choice of the set of coefficients 𝑎 remains.



Approximation of Derivatives: Example
 Convert the analog band-pass filter:                       into a digital filter 

using derivative approximation.

 Solution: substitute 𝑠 into 

 If T is selected small enough, the poles can be near the unit circle, for 
example, for 𝑇 0.1, we have:



IIR filter Design: Impulse Invariance  
Techniques
 In this technique, we work with the impulse response of the analog 

filter. The objective will be that the sample response of the digital IIR 
filter be equal to the samples of the analog filter’s impulse response, 
i.e., ℎ 𝑛 ℎ 𝑛𝑇 ,𝑛 0, 1, 2, …

 Assume that the poles of the analog filter are distinct, then we can 
write,

 So, we have

 The system function is:



IIR filter Design: Impulse Invariance  
Techniques
 Since 𝑝 1, the inner sum converges:

 and we have:

 This means that the digital filter has poles at 

 This implies that the transformation from s-domain to z-domain is 
given by           . 



IIR filters: Impulse Invariance Techniques
 The transformation            maps the LHP of the s-domain to the unit 

circle in the z-domain:





Impulse Invariance Techniques: Example
 Convert the analog filter with system function: 

 into a digital IIR Filter.

 Solution: We see that the analog filter has a zero at 𝑠 0.1 and 
complex conjugate poles at 𝑝 0.1 𝑗3.

 So, we can write 𝐻 𝑠 as:

 So,

 Combining the two conjugate poles:





Impulse Invariance Techniques: Aliasing
 Note that by letting ℎ 𝑛 ℎ 𝑛𝑇 ,𝑛 0, 1, 2, … we are sampling 

ℎ 𝑡 . In the frequency domain this results in the spectrum of the 
analog filter 𝐻 Ω repeat every 𝐹 Hz. 

 This means that in digital domain, in terms of normalized frequency,

 or equivalently,

 Or, in terms of the actual frequency in Hz.:



Impulse Invariance Techniques: Aliasing
 The formula:

 is shown here.

 We observe that in order to avoid 

Aliasing, we need to sufficiently large T,

or, equivalently large number of samples.



Impulse Invariance Techniques: Aliasing
 As an example, take the digital filter we designed in the above 

example:

 Here is the magnitude of the frequency response for T=0.1 and T=0.5 
together with the original analog filter. We see that the aliasing is 
more noticeable for T=0.5. So, this techniques is not suitable for high-
pass filter design.



IIR filter Design: Bilinear Transformation
 We saw that the derivative approximation and impulse invariance 

techniques are not suitable for high-pass filter design.

 Bilinear Transformation technique overcomes this problem by mapping 
the LHP of the s-plane into the inside of the unit circle in the z-plane.

 In the following slides, we describe this technique for a single pole IIR 
filter. The procedure, however, generalizes to the case of analog 
filters with multiple poles. 

 Consider a single pole linear filter with the system function:

 𝐻 𝑠 .

 The corresponding differential equation is:

 𝑎𝑦 𝑡 𝑏𝑥 𝑡 .



IIR filter Design: Bilinear Transformation
 Let’s integrate the derivative of 𝑦 to get:

 𝑦 𝑡 𝑦 𝜏 𝑑𝜏 𝑦 𝑡

 Approximating the above integral using the trapezoidal formula at: 
𝑡 𝑛𝑇 and 𝑡 𝑛𝑇 𝑇, we get:

 𝑦 𝑛𝑇 𝑦 𝑛𝑇 𝑦 𝑛𝑇 𝑇 𝑦 𝑛𝑇 𝑇 .

 𝑦′ 𝑛𝑇  is found by evaluating the differential equation at 𝑡 𝑛𝑇:

 𝑦 𝑛𝑇 𝑎𝑦 𝑛𝑇 𝑥 𝑛𝑇 .

 Substituting this in the expression for 𝑦 𝑛𝑇 and using 𝑦 𝑛 𝑦 𝑛𝑇
and 𝑥 𝑛 𝑥 𝑛𝑇 , we have the difference equation:

 1 𝑦 𝑛 1 𝑦 𝑛 1 𝑥 𝑛 𝑥 𝑛 1 .



IIR filter Design: Bilinear Transformation
 Taking the z-transform of the above difference equation:

 1 𝑌 𝑧 1 𝑧 𝑌 𝑧 1 𝑧 𝑋 𝑧 .

 So, the system function in the z-domain is:

𝐻 𝑧
𝑌 𝑥
𝑋 𝑧

𝑏𝑇
2 1 𝑧

1 𝑎𝑇
2 1 𝑎𝑇/2 𝑧

or, 

𝐻 𝑧
𝑏

𝑇
2

1 𝑧
1 𝑧 𝑎

So, the mapping from s-plane to z-plane is through:

𝑠 .



IIR filter Design: Bilinear Transformation
 To see how the bilinear transform maps the points in the  s-plane to 

points in the z-plane, let:

 𝑧 𝑟𝑒

 and

 Then,

 Therefore, 

 𝜎
 

 and 

 Ω  
 

.

 Note that 𝑟 1 ⇒  𝑟 1 0 ⇒ 𝜎 0 and similarly, 𝑟 0 ⇒ 𝜎 0. So, the 
bilinear transformation maps the Left Hand Side of the s-plane to inside of 
the unit circle and the RHP to outside of the unit circle. When 𝑟 1, i.e., on 
the unit circle, we get 𝜎 0. Do the 𝑗Ω axis is mapped to the unit circle.



IIR filter Design: Bilinear Transformation
 To summarize, 𝜎

 
and Ω  

 
.

 So when 𝑟 1, we get 𝜎 0 and:

 Ω tan ,

 or, 𝜔 2𝑡𝑎𝑛 . The relationship between the frequencies in s-domain (Ω) 
and z-domain (𝜔) can be plotted as:

 Not that the mapping is highly nonlinear resulting in the so called frequency 
warping.



IIR filter Design: Bilinear Transformation
Example
 Convert the analog filter with the system function:

 𝐻 𝑠 .
.

 into a digital IIR filter having resonant frequency 𝜔 𝜋/2 using bilinear 
transformation. 

 Solution: Note that the poles of the analog filter are at 𝑝 , 0.1 𝑗4, i.e., 
it has the resonant frequency Ω 4. Using the relationship Ω tan , we 

get 4 tan . So, 𝑇 . The transformation will be: 𝑠 4  resulting 

in: 𝐻 𝑧 . . .
. .

.

 Ignoring the very small term in the denominator, we get the approximation:

 𝐻 𝑧 . . .
.

.

 The filter has poles at 𝑝 , 0.987𝑒 / and zeros at 𝑧 1 and 𝑧 0.95.



Commonly Used Analog Filters
 There are several types of analog filters each with its characteristics and 

properties. They are briefly explained in the text and there is a lot of 
information in the literature about them that you may refer to in case in your 
future work you are tasked with the design of a filter with certain properties 
and constraints.

 These filters include: Butterworth Filters, Chebyshev filters, Elliptic Filters 
and Bessel Filters.

 These filters are mainly characterized by the location of their poles 
determined by a different polynomial in each case.

 We only talk briefly about the Butterworth filters. You are encouraged to go 
over other types of filters discussed at the end of Chapter 10 of Proakis and 
Manolakis textbook.

 An important type of filter is the raised-cosine filters you have seen in your 
digital communications course. Due to the importance of raised-cosine filters 
in today’s communication circuits I encourage you to read about them. 
Information about these filters can be found in any digtal communications 
textbook. You may also refer to Wikipedia 
(https://en.wikipedia.org/wiki/Raised-cosine_filter).



Butterworth Filters
 A Butterworth filter of order 𝑁 is an all-pole filter with its poles uniformly 

distributed around a circle. It can be characterized by its magnitude-squared 
frequency response:

 𝐻 Ω
/

 where 𝑁is the order of the filter and Ω is the cut-off frequency or -3 dB 
frequency of the filter. This is the frequency where the output power of the 
filter is ½ of its maximum at the origin, i.e., 3 dB attenuation.

 Since 𝐻 𝑠 𝐻 𝑠 evaluated at 𝑠 𝑗Ω is equal to 𝐻 Ω , we have:

 𝐻 𝑠 𝐻 𝑠
/

.

 So, the poles of 𝐻 𝑠 𝐻 𝑠 are equally spaced on a circle of radius Ω .

 Therefore, 

 = 1 / 𝑒 / ,      𝑘 0, 1, … ,𝑁 1.



Butterworth Filters
From the above, we find the filter poles as:

𝑠 Ω 𝑒 / 𝑒 / ,       𝑘 0, 1, … ,𝑁 1.

The position of poles for N=4 and N=5 is shown here:



Butterworth Filters
Denoting the frequency at the edge of the passband as Ω , we have,

𝐻 Ω
/

=
/

.

The attenuation at the passband edge Ω ,

i.e., 𝐻 Ω is equal to 1/ 1 𝜀 ). 

This figure shows the frequency response of 

the Butterworth filters for a few values of N:



Butterworth Filters
Using the expression for the magnitude-squared frequency response,

𝐻 Ω
/

=
/

.

we can compute the attenuation at and frequency Ω. For example to find the 
order of the filter such that the attenuation at the edge of the stop band (Ω ) 
does not exceed 𝛿 , we calculate the expression at Ω Ω and equate the result 
to 𝛿 , i.e.,  

/
𝛿 .

The order of the filter is then,

𝑁
𝑙𝑜𝑔 1/𝛿 1

2𝑙𝑜𝑔 Ω /Ω

So, the Butterworth filter is fully characterized by the parameters: 𝑁, 𝛿 , 𝜀 and 
the ratio Ω /Ω .



Butterworth Filters: Example

Example: Determine the order and the poles of a Butterworth filter with a -3 dB 
bandwidth of 500 Hz. and an attenuation of 40 dB at 1000 Hz.

Solution: The -3 dB frequency is Ω 1000𝜋 and the stopband frequency is    
Ω 2000𝜋. So, 

𝑁 6.64.

So, we have to have N=7. The poles are located at:

𝑠 1000𝜋𝑒 / ,          𝑘 0, 1, … , 6.



Frequency Transformations
 We have so far mostly talked about designing lowpass filters. If we need a 

highpass, a bandpass or a banstop filter, we can do by taking a prototype 
lowpass filter and change it to one these types of filters by transforming 
the spectrum of the prototype lowpass filter.

 Let’s first consider the analog filters. Say, we have a lowpass filter with 
the edge of the passband frequency Ω . Assume that we need a lowpass
filter with the edge of the passband frequency Ω . It is easy to see that 
we can do this by substituting 𝑠 by Ω /Ω 𝑠, i.e., 𝑠 → . So, the system 

function of the lowpass filter is 𝐻 𝑠 𝐻 Ω /Ω 𝑠 . Where 𝐻 𝑠 is the 
system function of the prototype filter.

 Also, the transformation 𝑠 → turns the prototype lowpass filter into 

a highpass filter with the system function 𝐻 𝑠 𝐻 .

 These transformations as well as transformations for bandpass and 
bandstop filters with the lower band edge frequency Ω and upper band 
edge frequency Ω are shown in the table in the next slide. 



Frequency Transformations: Analog Filters
 This figure shows the frequency transformation for analog filters 

where a prototype low pass filter with band edge frequency Ω is 
transformed into other types of filters



Frequency Transformations: Digital Filters
 In the case of digital filters the transformations in z-domain turning a 

prototype digital lowpass filter with band edge frequency 𝜔 into 
types of filters are shown in the following table:



Frequency Transformations: Example
 Example: Convert the single pole lowpass Butterworth filter with the 

system function:

 𝐻 𝑧 .
.

 into a bandpass filter with upper and lower cutoff frequencies 𝜔 and 
𝜔 , respectively. The lowpass filter has 3 dB bandwidth 𝜔 0.2𝜋.

 Solution: Referring to the table in the previous slide, the required 
transformation is:

 where 𝑎 and 𝑎 are found from the table. Substitution of 𝑧 results 
in:



Frequency Transformations: Example


