Lecture 5

Implementation of Linear Timeinvariant Systems

Different Implementation OPtions

We will mainly discuss the following structures:

- Direct Form Implementation,
- ▶ Cascade Form Implementation (Cascade Structure),
- **Parallel Structure,**
- **Lattice Structure,**

Direct Implementation

▶ Consider the general form of a linear time invariant system (filter). That is one with both feedback and feed forward path. The linear difference equation describing such a filter is:

$$
y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)
$$

▶ Using z-transform, we find the transfer function of the system as:

$$
H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}}
$$

Structure of FIR Systems

Assume that there is no feedback, i.e., the output y[n] does not depend on the past outputs and only depends on the input sequence:

$$
y(n) = \sum_{k=0}^{M-1} b_k x(n-k)
$$

 \blacktriangleright The denominator of $H(z)$ will be equal to one and we will have,

$$
H(z) = \sum_{k=0}^{M-1} b_k z^{-k}
$$

The unit sample response of the FIR system will be:

$$
h(n) = \begin{cases} b_n, & 0 \le n \le M - 1 \\ 0, & \text{otherwise} \end{cases}
$$

Direct Implementation of FIR Systems

When the FIR system has linear phase (it is symmetric):

$$
h(n) = \pm h(M - 1 - n)
$$

Linear Phase FIR Systems

 \blacktriangleright When the FIR system has linear phase (it is symmetric):

$$
h(n) = \pm h(M - 1 - n)
$$

Exercise:

- 1) Implement $y[n] = 3x[n] 2x[n-1] + x[n-2]$.
- 2) Is the filter $y[n]=x[n]-2x[n-1]-x[n-2]$ linear phase?

3) Implement the filter:

 $y[n] = 0.5x[n] + x[n-1] + 2x[n-2] + x[n-3] + 0.5x[n-4]$

Cascade Implementation of FIR Systems

It is easy to factor $H(z)$ into K second order filters:

$$
H(z) = \prod_{k=1}^{K} H_k(z)
$$

 \blacktriangleright where,

$$
H_k(z) = b_{k0} + b_{k1}z^{-1} + b_{k2}z^{-2}, \qquad k = 1, 2, ..., K
$$

and K is the M/2 for M even and $(M+1)/2$ for M odd.

Cascade Implementation of FIR Systems

▶ Where each section,

$$
H_k(z) = b_{k0} + b_{k1}z^{-1} + b_{k2}z^{-2}, \qquad k = 1, 2, ..., K
$$

 \blacktriangleright Is implemented as

Lattice filter implementation is widely used in adaptive filtering. Assume that we have a filter with transfer function H(z). We can write,

$$
H_m(z) = A_m(z), \qquad m = 0, 1, 2, \ldots, M-1
$$

where $A_m(z)$ is a polynomial with $A_0(z) = 1$

$$
A_m(z) = 1 + \sum_{k=1}^{m} \alpha_m(k) z^{-k}, \qquad m \ge 1
$$

 \blacktriangleright Y[n] can be written as

$$
y(n) = x(n) + \sum_{k=1}^{m} \alpha_m(k)x(n-k)
$$

The direct form implementation can be expressed as

This is called a prediction error filter.

- Let's consider a first order FIR filter, i.e., m=1: $y(n) = x(n) + \alpha_1(1)x(n-1)$
- Let the reflection coefficient $K_1 = \alpha_1(1)$. to get:

Now consider $m=2$:

 $y(n) = x(n) + \alpha_2(1)x(n-1) + \alpha_2(2)x(n-2)$

- ▶ We cascade two lattice stages:
- \blacktriangleright The out put of the first stage is,

$$
f_1(n) = x(n) + K_1 x(n-1)
$$

$$
g_1(n) = K_1 x(n) + x(n-1)
$$

And the output of the second stage is:

$$
f_2(n) = f_1(n) + K_2 g_1(n-1)
$$

$$
g_2(n) = K_2 f_1(n) + g_1(n-1)
$$

Two-stage lattice filter.

Let's consider on $f_2[n]$:

$$
f_2(n) = x(n) + K_1x(n-1) + K_2[K_1x(n-1) + x(n-2)]
$$

$$
= x(n) + K_1(1 + K_2)x(n - 1) + K_2x(n - 2)
$$

 \blacktriangleright $f_2[n]$ will be y[n] if:

$$
\alpha_2(2) = K_2, \qquad \alpha_2(1) = K_1(1 + K_2)
$$

or, equivalently if:

$$
K_2 = \alpha_2(2),
$$
 $K_1 = \frac{\alpha_2(1)}{1 + \alpha_2(2)}$

Conversion of reflection coefficients to filter taps

Use the following equations recursively,

$$
A_0(z) = B_0(z) = 1
$$

\n
$$
A_m(z) = A_{m-1}(z) + K_m z^{-1} B_{m-1}(z), \qquad m = 1, 2, ..., M - 1
$$

\n
$$
B_m(z) = z^{-m} A_m(z^{-1}), \qquad m = 1, 2, ..., M - 1
$$

EXAMPLE

Given a three-stage lattice filter with coefficients $K_1 = \frac{1}{4}$, $K_2 = \frac{1}{4}$, $K_3 = \frac{1}{3}$, determine the FIR filter coefficients for the direct-form structure.

Solution.
$$
m = 1
$$
. Thus we have $A_1(z) = A_0(z) + K_1 z^{-1} B_0(z)$
= $1 + K_1 z^{-1} = 1 + \frac{1}{4} z^{-1}$

Hence the coefficients of an FIR filter corresponding to the single-stage lattice are $\alpha_1(0) = 1$, $\alpha_1(1) = K_1 = \frac{1}{4}$. Since $B_m(z)$ is the reverse polynomial of $A_m(z)$, we have

$$
B_1(z) = \frac{1}{4} + z^{-1}
$$

Conversion of reflection coefficients to filter taps

Next we add the second stage to the lattice. For $m = 2$,

$$
A_2(z) = A_1(z) + K_2 z^{-1} B_1(z)
$$

= 1 + $\frac{3}{8}z^{-1} + \frac{1}{2}z^{-2}$

Hence the FIR filter parameters corresponding to the two-stage lattice are $\alpha_2(0) = 1$, $\alpha_2(1) =$ $\frac{3}{8}$, $\alpha_2(2) = \frac{1}{2}$. Also, $B_2(z) = \frac{1}{2} + \frac{3}{8}z^{-1} + z^{-2}$

Finally, the addition of the third stage to the lattice results in the polynomial

$$
A_3(z) = A_2(z) + K_3 z^{-1} B_2(z)
$$

= 1 + $\frac{13}{24}z^{-1}$ + $\frac{5}{8}z^{-2}$ + $\frac{1}{3}z^{-1}$

Consequently, the desired direct-form FIR filter is characterized by the coefficients

$$
\alpha_3(0) = 1
$$
, $\alpha_3(1) = \frac{13}{24}$, $\alpha_3(2) = \frac{5}{8}$, $\alpha_3(3) = \frac{1}{3}$

-3

Conversion of FIR Taps to Lattice reflection coefficients

We start with $A_{M-1}(z)$ and find lattice coefficients using

$$
A_m(z) = A_{m-1}(z) + K_m z^{-1} B_{m-1}(z)
$$

= $A_{m-1}(z) + K_m[B_m(z) - K_m A_{m-1}(z))$

Or, equivalently,

$$
A_{m-1}(z) = \frac{A_m(z) - K_m B_m(z)}{1 - K_m^2}, \qquad m = M - 1, M - 2, \ldots, 1
$$

EXAMPLE

Determine the lattice coefficients corresponding to the FIR filter with system function

$$
H(z) = A_3(z) = 1 + \frac{13}{24}z^{-1} + \frac{5}{8}z^{-2} + \frac{1}{3}z^{-3}
$$

First we note that $K_3 = \alpha_3(3) = \frac{1}{3}$. Furthermore, Solution.

$$
B_3(z) = \frac{1}{3} + \frac{5}{8}z^{-1} + \frac{13}{24}z^{-2} + z^{-3}
$$

Conversion of FIR Taps to Lattice reflection coefficients

The step-down relationship with $m = 3$ yields

$$
A_2(z) = \frac{A_3(z) - K_3 B_3(z)}{1 - K_3^2}
$$

= $1 + \frac{3}{8}z^{-1} + \frac{1}{2}z^{-2}$

Hence $K_2 = \alpha_2(2) = \frac{1}{2}$ and $B_2(z) = \frac{1}{2} + \frac{3}{8}z^{-1} + z^{-2}$. By repeating the step-down recursion we obtain $A_2(z) - K_2 B_2(z)$

$$
A_1(z) = \frac{A_2(z) - K_2 B_2(z)}{1 - K_2^2}
$$

= 1 + $\frac{1}{4}z^{-1}$
Hence $K_1 = \alpha_1(1) = \frac{1}{4}$.

 \blacktriangleright A recursive formula for finding the lattice coefficients:

$$
\alpha_{m-1}(k) = \frac{\alpha_m(k) - K_m \beta_m(k)}{1 - K_m^2}
$$

$$
=\frac{\alpha_m(k)-\alpha_m(m)\alpha_m(m-k)}{1-\alpha_m^2(m)}, \qquad 1\leq k\leq m-1
$$

Structure of IIR Systems

An IIR System can be expressed as $H(z) = H_1(z)H_2(z)$

With an all-zero part

$$
H_1(z) = \sum_{k=0}^M b_k z^{-k}
$$

and an all-pole part

$$
H_2(z) = \frac{1}{1 + \sum_{k=1}^{N} a_k z^{-k}}
$$

Structure of IIR Systems: Direct form I

Structure of IIR Systems: Direct form II

- If we put the all-pole filter firs, we get
- \blacktriangleright w[n] is the output of $H_2(z)$ and
- \blacktriangleright the input to $H_1(z)$
- \blacktriangleright So, we have

$$
w(n) = -\sum_{k=1}^{N} a_k w(n-k) + x(n)
$$

and

$$
y(n) = \sum_{k=0}^{M} b_k w(n-k)
$$

Structure of IIR Systems: Cascade Implementation

The transfer function $H(z)$ can be written as:

$$
H(z) = \prod_{k=1}^{K} H_k(z)
$$

- where K is $[N/2]$. That is it is N/2 for N even and $(N+1)/2$ for N odd.
- $H_k(z)$ has the general form of:

$$
H_k(z) = \frac{b_{k0} + b_{k1}z^{-1} + b_{k2}z^{-2}}{1 + a_{k1}z^{-1} + a_{k2}z^{-2}}
$$

Structure of IIR Systems: Cascade Implementation

 (b)

Cascade structure of second-order systems and a realization of each second-order section.

Structure of IIR Systems: Parallel Implementation

Performing partial fraction expansion, we get, $H(z) = C + \sum_{k=1}^{N} \frac{A_k}{1 - p_k z^{-1}}$

so we can implement the filter using N parallel branches each with a single pole.

Most often the poles are complex. The complex poles are pairs of conjugate poles. So, we can implement the filter with parallel second order branches:

Structure of IIR Systems: Parallel Implementation

Example:

Find the cascade and parallel implementation of the filter:

$$
H(z) = \frac{10(1 - \frac{1}{2}z^{-1})(1 - \frac{2}{3}z^{-1})(1 + 2z^{-1})}{(1 - \frac{3}{4}z^{-1})(1 - \frac{1}{8}z^{-1})[1 - (\frac{1}{2} + j\frac{1}{2})z^{-1}][1 - (\frac{1}{2} - j\frac{1}{2})z^{-1}]}
$$

We have

$$
H_2(z) = \frac{1 + \frac{3}{2}z^{-1} - z^{-2}}{1 - z^{-1} + \frac{1}{2}z^{-2}}
$$

 $H_1(z) = \frac{1 - \frac{2}{3}z^{-1}}{1 - \frac{7}{5}z^{-1} + \frac{3}{5}z^{-2}}$

So

 $H(z) = 10H_1(z)H_2(z)$

Example:

And the cascade implementation is:

Example:

For parallel implementation, we have:

$$
H(z) = \frac{A_1}{1 - \frac{3}{4}z^{-1}} + \frac{A_2}{1 - \frac{1}{8}z^{-1}} + \frac{A_3^*}{1 - (\frac{1}{2} + j\frac{1}{2})z^{-1}} + \frac{A_3^*}{1 - (\frac{1}{2} - j\frac{1}{2})z^{-1}}
$$

Structure of IIR Systems: Lattice Implementation

We have already done the all-zero filter:

Structure of IIR Systems: Lattice Implementation

Now, let's consider the all-pole filter:

$$
H_2(z) = \frac{1}{1 + \sum_{k=1}^{N} a_k z^{-k}}
$$

$$
H_2(z) = \frac{1}{1 + \sum_{k=1}^{N} a_k (k) z^{-k}} = \frac{1}{A_N(z)}
$$

We can write y[n] as:

or,

$$
y(n) = -\sum_{k=1}^{N} a_N(k) y(n-k) + x(n)
$$

Structure of IIR Systems: Lattice Implementation Then x[n] can be written as: $x(n) = y(n) + \sum a_N(k)y(n-k)$ $k=1$

 $f_N(n) = x(n)$

This is a lattice filter with similar to the one we saw before but the role of input and output changed. That is we have $x(n) = f_N(n)$ and $y(n) = f_0(n)$ We use:

$$
f_{m-1}(n) = f_m(n) - K_m g_{m-1}(n-1), \qquad m = N, N-1, ..., 1
$$

\n
$$
g_m(n) = K_m f_{m-1}(n) + g_{m-1}(n-1), \qquad m = N, N-1, ..., 1
$$

\n
$$
y(n) = f_0(n) = g_0(n)
$$

Input

Lattice structure for an all-pole IIR system.

Lattice Ladder Implementation of IIR Systems

Lattice-ladder structure for the realization of a pole-zero system.