Lecture 5

Implementation of Linear Time-
Invariant Systems




Different Implementation OPtions

» We will mainly discuss the following structures:

» Direct Form Implementation,

» Cascade Form Implementation (Cascade Structure),
» Parallel Structure,
>

Lattice Structure,




Direct Implementation

» Consider the general form of a linear time invariant system (filter). That is
one with both feedback and feed forward path. The linear difference
equation describing such a filter is:

N M
y(m) ==Y ay(n—k)+ ) bix(n — k)
k=1 k=0

» Using z-transform, we find the transfer function of the system as:




Structure of FIR Systems

» Assume that there is no feedback, i.e., the output y[n] does not depend on
the past outputs and only depends on the input sequence:

M—1
y(n) = > bix(n —k)
k=0

» The denominator of H(z) will be equal to one and we will have,

M—1
Hiz] = Z biz
k=0

» The unit sample response of the FIR system will be:

b,, O<n<M-1
LUl {0, otherwise




Direct Implementation of FIR Systems

M—1
y(n) = > bx(n —k)
k=0

i(_?_)» z—l Z_I Z—] voe z-l
* h(0) Y h(1) # h(2) J!h(3) I h(M - 2) Yy h(M-1)

TR %

» When the FIR system has linear phase (it is symmetric):

h(n) = +h(M — 1 —n)




Linear Phase FIR Systems

» When the FIR system has linear phase (it is symmetric):

h(n) o :l:h(M —1- n)

x(n)
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Exercise:

1) Implement y|n]| = 3x[n] — 2x[n — 1] + x[n — 2].

2) Is the filter y[n]=x[n]-2x[n-1]-x[n-2] linear phase?

3) Implement the filter:
yln] = 0.5x|n] + x[n — 1] + 2x[n — 2] + x|[n — 3] + 0.5x|n — 4]




Cascade Implementation of FIR Systems

» It is easy to factor H(z) into K second order filters:

K
H(z) = [ | H(2)

k=1
» where,

Hi(z) = bro + bzt + boz ™2, k=102 ca 6
» and K is the M/2 for M even and (M+1)/2 for M odd.

x(n) = x,(n) »(n) = ya(n) = Yk -1(n) =
Vel me 2 Hyz) |— L Helw)
x5(n) x4(n) xg(n)




Cascade Implementation of FIR Systems

» Where each section,
H(2) = bro + bzt + bz ™2, R P SR

» Is implemented as

x;(n)

1‘ byo \J’ by | b2

( > C : i(n) = x , ((n)
+ —




Lattice Structure

» Lattice filter implementation is widely used in adaptive filtering. Assume that
we have a filter with transfer function H(z). We can write,

H,(2) = Am(2), m=012,.. M—1

» where A;;(2) is a polynomial with Ao(z) =1

m
Ap(2) =1+Zam(k)z"‘, m > 1
k=1
» Y[n] can be written as

y(n) = x(n) + Y am()x(n — k)
k=1




Lattice Structure

» The direct form implementation can be expressed as

x(n) =i N oo
1 o,(2)
» Or
x(n)
Z -1 Fa -1 -
_am( 1 ) 1 _am(z) -am(3)

» This is called a prediction error filter.




Lattice Structure

» Let’s consider a first order FIR filter, i.e., m=1: y(n) = x(n) + a1(L)x(n — 1)

» Let the reflection coefficient K; = ay(1). to get:

o) ol e} — fin) =y(n)

x(n)

g,(n)

goln—1)
Joln) = go(n) = x(n)

filn) = foln) + Kigg(n — 1} = x(n) + Kjx(n—1)

g1(m) =K, fo(n) + go(n = 1) = Kjx(n) + x(n - 1)

En{ﬂ)r




Lattice Structure

» Now consider m=2:
y(n) = x(n) +ax(Dx(n — 1) + 22(2)x(n - 2)
» We cascade two lattice stages:

» The out put of the first stage is,
fi(n) =x(n) + K1x(n — 1)

gi1(n) = Kix(n) +x(n —1)
» And the output of the second stage 1s:

Hn) = fitn) + Kag1(n — 1)
g2(n) = K2 fi(n) + g1(n — 1)




Lattice Structure
Joln) ::/’:\ fi(n)

fr(n) = y(n)

x(n)

—-—z—i

goln)

gi(n)

Two-stage lattice filter.
» Let’s consider on f;[n]:
f2(n) =x() + Kix(n — 1) + K2[Kyx(n — 1) + x(n — 2)]

=x(n)+Ki(1+ K)x(n — 1)+ Krx(n —2)
» fo[n] will be y[n] if:
a2(2) = Ky, ax(1) = K1(1 + K3)

» or, equivalently if: az(1)
= Kl =———




Lattice Structure

» In general: fo(n) = go(n) = x(n)
fu() = fuo1(0) + Kngm-1(n —1), m=12,...,M—1
gm(n) = K fru—1(n) + gn—1(n — 1), m=1,2,...,M—1

» Then:
O fitn) Ll fu-am fu - 1(n) = y(n)
y (n) = f m—1(n) x(n) | First | Second ' (M = 1) i
goln) stage gi(n) | stage | &(n)  8m- 2("1_ stage 8m —1(n)
(a)
f;n - l(") fm(n)
il -

8m - 1(1) . W o
N
(b)
(M — 1)-stage lattice filter.




Conversion of reflection coefficients to filter taps

Use the following equations recursively,
Ap(z) = Bo(z) =1
An(2) = Am-1(2) + Kmz 'Bu-1(2),  m=1,2,...,M—1

Bu(z) =2 "Aniz™hH), m=12,...,M—-1
EXAMPLE

Given a three-stage lattice filter with coefficients Ky =
FIR filter coefficients for the direct-form structure.

, K» = 2, K3 = 3, determine the

Bl
e
L=

Solution. m = 1. Thus we have A,(z) = Ap(z) + K1z~ By(2)
=1+Kz'=1+ %Z_l

Hence the coefficients of an FIR filter corresponding to the single-stage lattice are «;(0) =1,
a(D)=K; = }. Since B, (z) is the reverse polynomial of A, (z), we have

Bi(z) =3 +27




Conversion of reflection coefficients to filter taps

Next we add the second stage to the lattice. For m = 2,
Ay(z) = A1(2) + K227 ' Bi(2)

=1+ %z‘l +* %z'z

Hence the FIR filter parameters corresponding to the two-stage lattice are o (0) = 1, a2(1) =
§:0Q) =3 Also, ppy=14 3142

Finally, the addition of the third stage to the lattice results in the polynomial
A3(2) = A2(2) + K327  Ba(2)
=14 gz‘j i %z‘z + %z‘3
Consequently, the desired direct-form FIR filter is characterized by the coefficients

waO=1 wab=3  «o@=3 ©@=;




Conversion of FIR Taps to Lattice reflection coefficients

» We start with A,,_;(z) and find lattice coefficients using

An(2) = Ap—1@2) + Kz 1 Byy_1(2)
= A1 (Z) + Km[Bm(Z) == KmAm—l(Z)]

Or, equivalently,

Am(2) — KnBin(2)
1-K2

An_1(2) = m=M-1M-2,...,1

EXAMPLE
Determine the lattice coefficients corresponding to the FIR filter with system function

H(z)=As(e) =1+ 35z 1+ 3272+ 327

Solution. First we note that K3 = a3(3) = % Furthermore,

Bi(z)y=3}+3z7 ' + 22 +7°




Conversion of FIR Taps to Lattice reflection coefficients

The step-down relationship with m = 3 yields

A3(z) — K3B3(2)

A(z) =

Hence K, = a;(2) = § and By(z) = 3 + 327 +z72. By repeating the step-down recursion

we obtain Asity= s Bale)
2(Z) — K2D2(2
Aiilg) =
l(z) fez Kzz
=1+ 177!
Hence K1 = ay(1) = 3.
» Arecursive formula for finding ot (k) — K Bm (k)

ﬂm—l(k) — 1— Kz
» the lattice coefficients: "’
. &'m(k) - {Im(m)am(m - k)

1 — a2 (m) ’




Structure of IIR Systems

» An IIR System can be expressed as  H(z) = Hy(z) H2(2)
» With an all-zero part

M
Hi(z) =Y bz
k=0

» and an all-pole part
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All-pole system

Direct form |

Direct form I realization.
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Structure of IIR Systems: Direct form Il

» |If we put the all-pole filter firs, we get
» win] is the output of H,(z) and
x(r) w(n)
» the input to H,(2) % i
» So, we have z
N —4
wn) = —Zakw(n — k) +x(n) U
k=1 g~
-
and y , “
y(n) =Y baw(n —k) :
k= .
Oy |
= = !
7
AN




Structure of IIR Systems: Cascade Implementation

» The transfer function H(z) can be written as:

K
H@) =[] He

k=1
» where Kis [N/2]. That is it is N/2 for N even and (N+1)/2 for N odd.

» H,(2) has the general form of:

bro + b1z~ + bz ™2

H =
€(2) 1+ arz7! + agpz72




Structure of IIR Systems: Cascade Implementation

x(n) = x;(n) Xxo(n) xi(n)
e H,(2) Ho(2) e - Hy(2) SN
yy(n) y2(n) v(n)

(a)

x;(n) 1 bro O yi(n) = x o ()
+ - e -+ -

—Qy by
- il —
A A
z e I
—Q) by
-t -
(b)

Cascade structure of second-order systems and a realization of each
second-order section.




Structure of IIR Systems: Parallel Implementation
N

Performing partial fraction expansion, we get, Ay

so we can implement the filter using N parallel branches each with a single pole.

Most often the poles are complex. The complex poles are pairs of conjugate
poles. So, we can implement the filter with parallel second order branches:

bro + b1z
14 gz~ 4+ arpz ™2

x(n) ( ) bio O idn)
+ = +
Y I
C} —dy } by
+ = =

|

Hi(z) =




Structure of IIR Systems: Parallel Implementation

c

2 o

— HI(Z) ——

e H2( Z) e

x(n)

+ y(n)

bro + br1z”!
1+ a1z + arpz™2

Hi(z2) =




Example:
Find the cascade and parallel implementation of the filter:

1011 — 327 1A - 32 Hd + 27
H@) = o o s i, — (1 — i
(1-32 DA =gz Y1 -G+ 11— (53 -3zt

We have 1 — 2zl
1(2) = 3
1~ 1771 4 3272
1+3z71-272

&

D

L
|

So
H(z) = 10H,(2)H2(2)




Example:

And the cascade implementation is:

x(n)

W o

L 0=

;




Example:

For parallel implementation, we have:




Structure of IIR Systems: Lattice Implementation

We have already done the all-zero filter:

M
Hi() =) bz
=0

Jo(n) fitn) fo(n) o Sor-2(n) S - 1(n) = y(n)
x(n) | First | Second (M- 1% -
go(n) stage &(n) stage | &(n) 8- 2('31_ stage &m - (n)
(a)
f;n - l(") fm(n)

gm - I(n)

(b)
(M — 1)-stage lattice filter.




Structure of IIR Systems: Lattice Implementation

Now, let’s consider the all-pole filter:

1
H>(z) = v
1+ Zakz_k
or, |
1 1
Hy(z) = = = o)

1+ Z an (k)z™*
k=1

We can write y[n] as:

N
y(n) = = an(k)y(n — k) + x(n)
=1




Structure of IIR Systems: Latti%e Implementation

Then x[n] can be written as: x(n) = y(n) + ZGN k)y(n — k)
k=1

This is a lattice filter with similar to the one we saw before but the role of input
and output changed. That is we have x(n) = fy(n)and y(n) = fo(n) We use:

fn(@n) = x(n)
fm—].(n) =fm(ﬂ)-Km3m—l(n-l): m = N:N_11-*-11
gmn(n) = K fm-1(n) + gm-1(n — 1), m=N,N-1,...,1

y(n) = fo(n) = go(n)

x(n) v 1(m) Hn) foln) = y(n)

qu;ut

z—] |t =+

gnin) | ga(n)

gi1(n) go(n)

Lattice structure for an all-pole IIR system.



Lattice Ladder Implementation of IIR Systems

x(n) D Joln)
Inln)
gnn)
—{.; ~——1 gy(n)
Y Yy Y vy i Va ¥ Vi 4[ vy
1 1

'@"& _ #\bi{f)

Lattice-ladder structure for the realization of a pole-zero system.

O,




