
Quantization Effects

Lecture 6

Fixed Point Implementation

 In previous lecture, we talked about the implementation of LTI
systems without taking into consideration the fact that these systems
are implemented using processing units that have limited number of
bits to represent data as well as filter coefficients.

 In this lecture, we consider the effect of the quantization of the filter
coefficient and truncation of the signal needed to avoid overflow.

 We first, consider the representation of numbers as it appears in
digital computers.

 The limited number of bits used to represent the numbers, results in
loss of precision that results in round-off errors and nonlinear effects.

 The objective would be to quantify these effects.

Representation of the Numbers
 In the arithmetic we use ever day, when we write 123.45, we mean:

 the reason being that our arithmetic uses base 10. In fact, for someone not
familiar with this convention, we should have written the number as:

 to emphasize that the base was 10.

 Computers, use base 2 instead of base 10. So, a typical number intended for
machine may be written as:

Representation of the Numbers
 In general a binary number can be represented as

 Let’s consider the case of A=n-1 and B=0, then we have an n-bit integer
between 0 and 2𝑛𝑛 − 1.

 Next consider the case of A=0 and B=n-1. Then we have a fraction between 0
and 1 − 2−𝑛𝑛.

 Note that if we factor 2𝐴𝐴 and integer or a mix of integer and fraction can be
change into a fraction, we only need to focus on fractions, i.e., numbers
between 0 (0.000…) and 1 (0.111…).

Negative Numbers
 There are three ways to represent negative numbers:

 Sign-magnitude format,

 1’s complement format and,

 2’s complement format.

 In all three formats a positive number X is represented as:

 Note that the Most Significant Bit (MSB) is a zero.

Negative Numbers
 A negative number:

 In Sign-magnitude will be represented as:

 i.e., with MSB changed to 1.

 In 1’s complement all bits will be complemented:

 where .

 Note that:

Negative Numbers
 In two’s complement format, the representation for a negative number is

obtained by subtracting the corresponding positive number (the absolute
value of) the negative number from 2. Equivalently, we can add a list
significant bit (LSB) to the 1’s complement:

 It is easily seen that, this is equivalent to subtraction the absolute value of
the number from 2:

 Now, let’s use geometric progression sum formula to show that 𝑋𝑋2𝐶𝐶is in fact
the negative number .

Negative Numbers
 We have: 𝑆𝑆𝑛𝑛 = 1 + 𝑞𝑞 + 𝑞𝑞2+𝑞𝑞3 + ⋯+ 𝑞𝑞𝑛𝑛−1 = 1−𝑞𝑞𝑛𝑛

1−𝑞𝑞
.

 Or, equivalently: 𝑆𝑆𝑛𝑛 = 𝑞𝑞 + 𝑞𝑞2+𝑞𝑞3 + ⋯+ 𝑞𝑞𝑛𝑛 = 𝑞𝑞 1−𝑞𝑞𝑛𝑛

1−𝑞𝑞
.

 Letting 𝑞𝑞 = 1
2

and 𝑛𝑛 = 𝐵𝐵, we get: ∑𝑖𝑖=1𝐵𝐵 2−𝑖𝑖 = 1 − 2−𝐵𝐵 or ∑𝑖𝑖=1𝐵𝐵 2−𝑖𝑖 + 2−𝐵𝐵 = 1.

 Using this we write:

Negative Numbers: Example
 Express: 7

8
and −7

8
in one’s and two’s complement formats.

 Solution:

 𝑋𝑋 = 7
8

is equal to 1
2

+ 1
4

+ 1
8

= 2−1 + 2−2 + 2−3, So X=0.111.

 −7
8

in 1’s complement format is: 𝑋𝑋1𝐶𝐶 = 1.000.

 In 2’s complement: 𝑋𝑋2𝐶𝐶 = 1.000 + 0.001 = 1.001.

Addition
 In 1’s and 2’s complement addition is performed bit by bit modulo-2.

 In one’s complement if there is a carry in MSB, it is moved to the LSB.

 IN two’s complement if there is a carry in the MSB it is deleted.

 Example: 1
2
− 3

8
.

 In 1’s complement: 1
2

= 4
8

= 0100, 3
8

= 0011 and −3
8

= 1100.

 So, 0100 ⊕ 1100 = 1000.

 After moving the carry in MSB to LSB, we get 0001, i.e., 1
8
.

 In 2’s complement , 0100 ⊕ 1101 = 1001.

 Deleting the carry, we get 0001.

Modulo Arithmetic
 Most Digital Signal Processors use 2’s complement format. So for (B+1)-bit

numbers the range is from -1 to 1 − 2−𝐵𝐵. We can represent numbers in this
range on a wheel:

Modulo Arithmetic
 2’s complement operation is actually modulo 2𝐵𝐵+1arithmetic. That is, any

number that falls outside this range is brought back in-range by subtractiong
as many times 2𝐵𝐵+1as necessary.

Multiplication:

Multiplication of a two b-bit numbers results in a number with 2b bits. In fixed
point arithmetic, we need to truncate the number, i.e., dropping the b Least
Significant Bits (LSB’s). This results in Truncation or Round-off Error.

Floating-Point Representation
 So far, we have talked about Fixed-Point representation of the numbers. In

fixed-point representation the numbers in the range of, say between 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 to
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 are represented each with 𝑏𝑏 bits. Therefore there are 𝑚𝑚 = 2𝑏𝑏 values and
the resolution will be Δ = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛

𝑚𝑚−1
. So, in fixed point representation the

resolution is fixed. It is reasonable to demand for higher resolution for smaller
numbers and lower resolution for large numbers.

 Floating-Point representation allows different step sizes (resolution) and also
wider dynamic range for the same number of bits.

 In floating-point representation a number 𝑋𝑋 is represented as: 𝑋𝑋 = 𝑀𝑀. 2𝐸𝐸

 where the mantissa 𝑀𝑀 is the fractional part of the number and falls in the
range of 0.5 ≤ 𝑀𝑀 < 1. The exponent 𝐸𝐸 is a positive or negative integer.

Floating-Point Representation
 As an example, the number 𝑋𝑋1 = 5 is represented by:

 𝑀𝑀1 = 0.101000 and 𝐸𝐸1 = 011

 and 𝑋𝑋2 = 3
8

is represented by:

 𝑀𝑀2 = 0.110000 and 𝐸𝐸2 = 101,

 where MSB of the exponent is the sign bit.

 To multiply floating point numbers, we multiply their mantissa’s and add their
exponents. So,

 𝑋𝑋1𝑋𝑋2 = 𝑀𝑀1𝑀𝑀2. 2𝐸𝐸1+𝐸𝐸2 = 0.011110 . 2010 = 0.111100 . 2001.
 For addition, the exponents have to be the same. We can achieve this by shifting

the mantissa of the smaller number to the right and compensating the
corresponding exponent: 𝑀𝑀2 = 0.000011 and 𝐸𝐸2 = 011. Now:

 𝑋𝑋1 + 𝑋𝑋2 = 0.101011 . 2011

 Note that this may result in loss of precision if we lose bits as a result of the shift.

Floating-Point versus Fixed-Point
 Assume that we have a 32-bit processor and we use fixed point. The largest

number that we can show is:

 To show negative and positive number, we can use the MSB as a sign bit and
other 31 bits to represent magnitude. Then the range of numbers will be:

 Note that the resolution is one no matter what the number is.

 We can increase the resolution by assigning 10 bits to a fraction parts, 21 bits
to the integer part and 1 sign bit. Then the dynamic range is:

 or

 We have increased the resolution 1000 times (210 = 1024) while reducing the
dynamic range 1000 times.

Floating-Point versus Fixed-Point
 Now let’s use floating-point representation. Assume that we use 23 bits plus a

sign bit for the mantissa and 7 bits plus a sign bit for the exponent.

 The smallest number we can have is:

 And the largest number is:

 So, we have achieved a dynamic range of 1076with varying resolution. That is,
we have finer resolution for small numbers and coarser resolution for larger
numbers.

IEEE 754 Standard
 When using floating point representation, there can be ambiguities

concerning the representation zero, overflow and other issues.

 In order to define a common floating-point format, IEEE has introduced the
IEEE 754 standard. IEEE 754 is widely used.

 For a 32-bit machine, the IEEE 754 standard single precision, floating point
number is represented as 𝑋𝑋 = −1 𝑠𝑠. 2𝐸𝐸−127(𝑀𝑀), where:

 The dynamic range of IEEE 754 floating-point numbers is:

 i.e.,

IEEE 754 Standard
 This number has the following interpretations:

 For example:

 represents:

Truncation Error
 Assume that in the course of computation, we have got a number with 𝑏𝑏𝑢𝑢

bits, while our machine can only handle up to 𝑏𝑏 < 𝑏𝑏𝑢𝑢 bits.

 Quantizing the number

 to

 Results in the truncation error:

 For positive numbers, truncation results in a smaller number. So,

 For a negative number on the other hand:

 So, in signed-magnitude format:

Truncation Error
 In 2’s complement format, the negative of a number is the result of

subtracting the corresponding positive number from 2. So, the effect of
truncation of a negative number, in 2’s complement is to increase its
magnitude, therefore,

 and hence,

 In summary:

 In signed magnitude format

 and in 2’s complement format

Truncation Error

 This figure shows the truncation

 error in 2’s complement format.

Truncation Error

 This figure shows the truncation

 error in sign-magnitude format.

Rounding Error
 Rounding a 𝑏𝑏𝑢𝑢 bit number down to 𝑏𝑏 bits, results in quantization error:

 Rounding only deals with the magnitude and therefore, is independent of the
format used. It is symmetric around zero:

Rounding Error
 Following figure shows

 the rounding error effect:

Floating-point Truncation and Rounding Errors
 In a floating-point format, the mantissa is either rounded or truncated. Unlike

the fixed-point representation, the error depends on the number being
quantized. It is possible to model the quantization as: 𝑄𝑄 𝑥𝑥 = 𝑥𝑥 + 𝑒𝑒𝑥𝑥 where 𝑒𝑒
is called the relative error. So, the error is 𝑄𝑄 𝑥𝑥 − 𝑥𝑥 = 𝑒𝑒𝑥𝑥.

 For truncation in 2’s complement format, for positive numbers:

 Since , we have:

 For negative numbers:

 So,

 For rounding

 Since 𝑥𝑥 falls in the range of , we have:

Statistical Modeling of Errors
 We can write the quantized value as:

 where 𝜀𝜀 is either truncation or rounding error.

 The error 𝜀𝜀 is usually modelled as a random variable.

Statistical Modeling of Errors

 For round-off error, we have

Statistical Modeling of Errors

 For truncation error in sign-magnitude format, we have

Statistical Modeling of Errors

 For truncation error in two’s complement format, we have

Statistical Characterization of Quantization
Effects

 Consider a single-pole system:

 Assume the quantized version of this system, i.e.,

Statistical Characterization of Quantization
Effects

 This is a nonlinear difference equation represented by:

 The effect of rounding can be modelled as a noise sequence added to the
actual product 𝑎𝑎𝑎𝑎(𝑛𝑛 − 1), i.e.,

 𝑄𝑄𝑟𝑟 𝑎𝑎𝑎𝑎(𝑛𝑛 − 1) = 𝑎𝑎𝑎𝑎 𝑛𝑛 − 1 + 𝑒𝑒(𝑛𝑛)

 The system now can be described by a linear difference equation

 𝑎𝑎 𝑛𝑛 = 𝑎𝑎𝑎𝑎 𝑛𝑛 − 1 + 𝑥𝑥 𝑛𝑛 + 𝑒𝑒(𝑛𝑛).

Statistical Characterization of Quantization
Effects

 This linear difference equation can be represented by:

 It is clear that the output can be written as 𝑎𝑎 𝑛𝑛 = 𝑦𝑦 𝑛𝑛 + 𝑞𝑞(𝑛𝑛), where 𝑦𝑦(𝑛𝑛) is
the output due to input 𝑥𝑥 𝑛𝑛 and 𝑞𝑞(𝑛𝑛) is the output due to the input 𝑒𝑒(𝑛𝑛).

 So we have:
𝑦𝑦 𝑛𝑛 + 𝑞𝑞 𝑛𝑛 = 𝑎𝑎𝑦𝑦 𝑛𝑛 − 1 + 𝑎𝑎𝑞𝑞 𝑛𝑛 − 1 + 𝑥𝑥 𝑛𝑛 + 𝑒𝑒(𝑛𝑛)

Statistical Characterization of Quantization
Effects

 To simplify the analysis, let’s make the following assumptions:

Statistical Characterization of Quantization
Effects

 The last assumption allows us to separate the difference equation into two
separate difference equations: one with input 𝑥𝑥(𝑛𝑛) and output 𝑦𝑦(𝑛𝑛) and
another one with input 𝑒𝑒(𝑛𝑛) and output 𝑞𝑞(𝑛𝑛):

 To proceed, we use two properties of random variables going through linear
systems that you may have seen in your probability course and we will also
later see when we review random processes.

 Assume that 𝑞𝑞 𝑛𝑛 is the response of an LTI system with unit sample response
ℎ(𝑛𝑛) when the input is a random sequence 𝑒𝑒(𝑛𝑛) with mean 𝑚𝑚𝑒𝑒. Then,

 𝑚𝑚𝑞𝑞 = 𝑚𝑚𝑒𝑒 ∑−∞∞ ℎ(𝑛𝑛) = 𝑚𝑚𝑒𝑒𝐻𝐻(0).

Statistical Characterization of Quantization Effects
 The second property is concerned with the auto correlation function of 𝑞𝑞(𝑛𝑛):

 In the important special case where the random sequence is WHITE
(memoryless or equivalently, spectrally flat), i.e.,

 we have:

 The variance 𝜎𝜎𝑞𝑞2 is computed by evaluating 𝛾𝛾𝑞𝑞𝑞𝑞(𝑛𝑛) at 𝑛𝑛 = 0. So,

Statistical Characterization of Quantization Effects
 For the single-pole filter under consideration, the unit sample response is:

 ℎ 𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑢𝑢(𝑛𝑛)

 So,

 Now, let’s find the variance of the signal 𝑦𝑦(𝑛𝑛).

 𝑦𝑦 𝑛𝑛 = ∑𝑚𝑚=−∞
∞ ℎ 𝑚𝑚 𝑥𝑥(𝑛𝑛 − 𝑚𝑚).

 Assume that the dynamic range of the computer is limited to (-1, 1), i.e.,
𝑦𝑦(𝑛𝑛) < 1 and assume that the input 𝑥𝑥(𝑛𝑛) is bounded by 𝐴𝐴𝑚𝑚. In order not to

have overflow, we require that:

 𝑦𝑦(𝑛𝑛) = ∑𝑚𝑚=−∞
∞ ℎ 𝑚𝑚 𝑥𝑥(𝑛𝑛 − 𝑚𝑚) ≤ 𝐴𝐴𝑚𝑚 ∑𝑚𝑚=−∞

∞ ℎ(𝑚𝑚) < 1

 or 𝐴𝐴𝑚𝑚 < 1
∑𝑚𝑚=−∞
∞ ℎ(𝑚𝑚)

.

Statistical Characterization of Quantization Effects
 For the single-pole filter under consideration, the unit sample response is:

 ℎ 𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑢𝑢(𝑛𝑛)

 So, ∑𝑚𝑚=−∞
∞ ℎ(𝑚𝑚) = 1

1− 𝑚𝑚
. So, 𝐴𝐴𝑚𝑚 = 1 − 𝑎𝑎 .

 Assume that the input is uniformly distributed between −𝐴𝐴𝑚𝑚and +𝐴𝐴𝑚𝑚.

 The variance of the input will be and the output will have

 Variance

Statistical Characterization of Quantization Effects
 The signal-to-Noise-Ratio (SNR) is defined as the ratio of the signal power 𝜎𝜎𝑦𝑦2

to quantization noise power 𝜎𝜎𝑞𝑞2:

 We note that there is a considerable penalty paid as a consequence of scaling
the input. This is particularly true when the pole is near the unit circle.

Quantization Effects: Example
 Example: Determine the variance of the round-off noise at the output of two

cascade realizations of the filter with system function:

 where,

 and

Solution: Let ℎ(𝑛𝑛), ℎ1(𝑛𝑛) and ℎ2(𝑛𝑛) represent the sample responses
corresponding to 𝐻𝐻(𝑧𝑧), 𝐻𝐻1(𝑧𝑧) and 𝐻𝐻2(𝑧𝑧), respectively. We have:

Quantization Effects: Example
 In the first realization:

 we have:

Quantization Effects: Example
 In the second realization:

 we have:

Quantization Effects: Example
 We have:

 So:

 and

 So, the noise power in the second realization is 9% more than the first
realization.

	Quantization Effects�
	Fixed Point Implementation
	Representation of the Numbers
	Representation of the Numbers
	Negative Numbers
	Negative Numbers
	Negative Numbers
	Negative Numbers
	Negative Numbers: Example
	Addition
	Modulo Arithmetic
	Modulo Arithmetic
	Floating-Point Representation
	Floating-Point Representation
	Floating-Point versus Fixed-Point
	Floating-Point versus Fixed-Point
	IEEE 754 Standard
	IEEE 754 Standard
	Truncation Error
	Truncation Error
	Truncation Error
	Truncation Error
	Rounding Error
	Rounding Error
	Floating-point Truncation and Rounding Errors
	Statistical Modeling of Errors
	Statistical Modeling of Errors
	Statistical Modeling of Errors
	Statistical Modeling of Errors
	Statistical Characterization of Quantization Effects
	Statistical Characterization of Quantization Effects
	Statistical Characterization of Quantization Effects
	Statistical Characterization of Quantization Effects
	Statistical Characterization of Quantization Effects
	Statistical Characterization of Quantization Effects
	Statistical Characterization of Quantization Effects
	Statistical Characterization of Quantization Effects
	Statistical Characterization of Quantization Effects
	Quantization Effects: Example
	Quantization Effects: Example
	Quantization Effects: Example
	Quantization Effects: Example

