Chapter 2

2.1
()
z(n) = {...0,%,%,%,1,1,1,0,...}

; Refer to fig 2.1-1.
{b) After folding s{n) we have

1
0
13
P | -2 1 a I 2 j' 4 =
Figure 2.1-1:
21
z(—mn) = {...0,1,1,1,%, 3 5,0,...} .

After delaying the folded signal by 4 samples, we have

| =

2
1‘("1’1+4) = {...0,?,1,1,1,1,§s

12
—4)=4... = R
.'E(ﬂ ) { ?:0: 3s 3}11111)1)03 }

On the other hand, if we delay x(n) by 4 samples we have

Now, if we fold z(n ~ 4) we have
21
-n=-4)=4¢...0,1,1,1,1,-,-,0,0,...
z(=n—4) { 330(_) }
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Cajf b

z(-n+4) = {...(_),1,1,1,1r

10
.~3, faas

(d) To obtain z{-n + k), first we fold z(n). This yields z(-n}. Then, we shift (-n} by k
samples to the right if k£ > 0, or k samples to the left if k < 0.

{e) Yes.
z(n) = 36(n ~2)+ %a(n +1) + uln) - u(n - 4)
2.3
(2)
0, n<0
ufn) ~un=1)=4dn)={ 1, n=0
0, n>0
{b)
L 0, n<0(
k;_mo{k] B { 1, n=0
San-k={ ] 50
2.6

{a) No, the system is time variant. Proof: If

z(n) —» y(n) = z(n?)
aln k) = () = aln—k’]
= z(n?+k? - 2nk)

# yln—k)
(b} {1)
z(n) = {0,%,1,1,1,0,...}
(2}
2y
y(n) = z(n®) = {...,0,1,%,1,0,...}
(3)

y(n-2) = {...,0,9,1,1,1,0,...}
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4)
r(n-2)= {...,(T),O,LLI,I,O,. }

{5)
yln)=Tzn -2} = {...,0, 1,0,?,0,1,0,...}
(6}
y2(n} # y(n — 2} = system is time variant.
{c) (1)
z(n) = {},1,1,1}
(2)
y(n) = {%loioiolol _1}
(3
y(n = 2) = {(1]101 ]-:Ol U:O!Ov _1}

{4)
z(n—2) = {Q,O,l,l,l,l,l}

(5)
yz(“) e {?101 110:0,0:01 _1}

(6)

2(n) =y(n - 2).

The system is time invariant, but this example alone does not constitute a proof.
(d) (1)

y(n) = nz(n),

z{n) = {...,0,%,1,1,1,0,_,_}

2
y(n) = {.‘.,?,1,2,3,...}
(3)
yln—2) = {...,?,0,0,1,2,3,...}
(4)

z(n—-2) = {...,0,0,0,1,1,1,1,...}
i
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yo(n) = Tlx(n - 2)] ={...,0,0,2,3,4,5,...}

yo(n} # y{n — 2) = the system is time variant.

2.7

{a) Static, nonlinear, time invariant, causal, stable.
{b} Dynamic, linear, time invariant, noncausal and unstable. The latter is easily proved.
For the bounded input x(k) = u(k), the output becomes

= 0 n< -1
= 3wl ={ 2, , 257
sl u =

since y(n) — co as n — oo, the system is unstable.
{c) Static, linear, timevariant, causal, stable,
{d) Dynamic, linear, time invariant, noncausal, stable.
{e) Static, nonlinear, time invariant, causal, stable.
(f) Static, nonlinear, time invariant, causal, stable.
{g) Static, nonlinear, time invariant, causal, stable.
(h) Static, linear, time invariant, causal, stable.
(i) Dynamie, linear, time variant, noncausal, unstable. Note that the bounded input
xz(n) = u(n) produces an unbounded output.
(3) Dynamic, linear, time variant, noncausal, stable.
(k) Static, nonlinear, time invariant, causal, stable.
(1) Dynamic, linear, time invariant, noncausal, stable,
{m) Static, nonlinear, time invariant, causal, stable.
{(n) Static, linear, time invariant, causal, stable.

2.8
(a) True. If
v (n) = Ty[x1(n)] and
va(n) = Thlz2(n)),
then
mz1(n) + asza(n)
yields

v (n) + Qg (n)
by the linearity property of 7;. Similarly, if
v1{n) = T2{v,(n)] and
y2(n) = Talwz(n)],
then
Brvi(n) + Fava(n) — y(n) = iy (n) + Bayz(n)
by the linearity property of 73. Since

vi(n) = Ty[x1(n)] and
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vz(n) = Tolxa(n)],
it follows that
Az (n} + Agzo(n)
vields the output
ArT[zi{n)] + AT [z2(n)],

where T = 7, 7;. Hence T is linear.
{b) True. For 7y, if

z{n) — v{n) and
z(n — k) — v(in — k),
For T3, if
v(n} = y(n)
andv(n — k) — y(n - k).
Hence, For T\ 75, if
z(n) — y(n) and
z(n — k} — y(n — k)

Therefore, T = 7, 7; is time invariant.
{c) True. 7, is causal = v{n) depends only on x{(k) for £ < n. T is causal => y(n) depends only on v(k) for k <
n. Therefore, y(n) depends only on z({k) for k < n. Hence, T is causal.
{d) True. Combine (&) and (b).
{e) True. This follows from h)(n) * ha(n) = ha(n) * hy(n)
{f) False. For example, consider
T, : y(n) = nz{n) and

Tz : y(n) = nz(n + 1).

Then,
LILB@I = T(0) =o0.
TL[REm)] = Tlén+1)
= —dn+1)
# 0.

(g) False. For example, consider
T :y(n) =z(n) + band

T : y{n) = z(n) — b, where b # 0.
Then,
Tia(m)] = TalTife(m)]] = Talz(n) + b = a(n).

Hence T is linear.
(h) True.

T, is stable = v(n) is bounded if z{n) is bounded.

T, is stable = y(n) is bounded if v(n) is bounded .
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Hence, y(n) is bounded if x(n) is bounded = 7 = T;7; is stable.
(1) Inverse of {c). 7; and for 7; are noncausal = 7 is noncausal. Example:

Ti:y(n) = z(n+1)and
T2:y(n) = z(n-2)
=T :y(n) = z(n-1),

which is causal. Hence, the inverse of {c) is false.
Inverse of (h): 7y and/or 7; is unstable, implies 7 is unstable. Example:

T, : y(n) = €*'™, stable and T; : y(n) = Infz(n)], which is unstable,

But T : y(n) = z{n), which is stable. Hence, the inverse of (h) is false.

2.15
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{b) For M =0,a| < 1, and N — oo,

2.17
(a)

z(n)

h{n)

y(n)

y(0)
y(1)
¥(2)
¥(3)
y(4)

Il

y(5) =

y(6)
¥
y(8)
y{(n)

y(n)

{1, 1,1, 1}
T
{?’514’312, 1}

> a(k)h(n — k)

k=0

2(0)h(0) = 6,

2(0)A(1) + z(1)h(0) = 11

2(0)A(2) + z(1)h(1) + z(2)h(0) = 15

2(0)h(3) + z(1)h(2) + (2)h(1) + =(3)A(0) = 18

2(0)h{4) + T(1)R(3) + z(2)h(2) + z(3)A(1) + 2(4)h(0) = 14
2(0)h(5) + 2(L)R(4) + 2(2)A(3) + z(3)R(2) + z(4)h(1) + z(5)R(0) = 10
2(1)A(5) + z(2)h(4) + z(3)h(2) = 6

w(2)h(5) + z(3)h(4) = 3

#(3)h(5) = 1

on=>9

{6 11,15,18,14,10,6, 3, 1}



{b) By following the same procedure as in {a), we obtain
y(n) = {6, 11,15, 118, 14,10,6,3, 1}
(c) By following the same procedure as in (a), we obtain
y(n) = {1,%,2,2, 1}

(d) By following the same procedure as in (a}, we obtain

y(n) = {%,2.2.2:1}

2.18
(a)
12 45
:c(n) = {?:51511351512}
h(n) = {1,1,%,1,1}
y(n) = z(n)=h(n)
1 10 _ 20 11
= {gl%?zl?!sl?lﬁls'l?!z}
(b}
2(r) = gnfuln) — vl =),
hin) = uln+2)—u(n-23)
y(n) = =x(n)=*h(n)
= Srluln) — u(n — 7)] « fu(n +2) — u(n — 3)
= %n[u(n) *u(n+2) = u@) *u(n ~ 3) ~ u(n - 7) *u(n + 2) + u(n ~ 7) *»u(n - 3)]
yn) = %6(n+1)+6(n)+26(n—1)+¥6(n 2)+55(n—3)+2?05(n- 4) +66(n - 5)
+58(n — 6) + 56(n — 6) + %6(7; —T)+6(n-8)
210
2.31

From 2.30, the characteristic values are A = 4, —1. Hence
yn(n) = c14™ +cp(—1)"

When z(n) = 6(N), we find that
y(0) = 1 and

y(1) - 3y(0) = 2 or

y(1) = 5.

Hence,
ci+cx=1andde; —~e2 =5

This yields, ¢, = ¢ and ¢; = — . Therefore,

hfn)i [24" — %(—1)"] u(n)



2.35
(a) h(n) = hy(n) * [ha(n) — hs(n) * hs{n})]
(b)

hs(n) s ha(n) = (n—u(n-2)
ha(n) — ha(n) * haln) = 2u(n) - b(n)

h] (ﬂ.)

1l

%o‘(n) + %J(n “1)+ %J(n ~9)
Hence h(n) = [%S(n) + %J(n 1)+ %6(11 2)] * 2u(n) - 6(n)]
- %6(11) + 4§<S(n, “1)+2(n-2)+ :u(n _3)
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2.37

h(n) = [u(n)~u(n~ M) /M
sn) = D ulkdh(n—k)

n l‘]'_l, M
- Eﬂh(n—k):{lf‘f EM
2.38

o0 =]

Y @)l 3 e
n=—o0 n={Lneven
o0
- S
n=0

1
1 —|al?

Stable if |a] < 1
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2.48

(a}
Y = ay(n - 1)+ bx(n)
= h(n) = ba"uln)
hn) = -0
o1 nz=0 (n) 1-a =]
{4 =b = 1-gq

s(n) = ih(n —k)
k=0

= 3 [:ﬂ’] w(n)

l1-a
b
s(o0) = . 1
=b = l-a.
{c) b=1~ a in both cases.
2.49
(a)
y(n) = 0.8y(n — 1)+ 2z(n) + 3z(n - 1)
y(n) —08y(n 1) = 2z(n)+3a(n -1}
The characteristic equation is
A-08 = 0
A = 08

yn(n) = c{0.8)"
Let us first consider the response of the sytem
y(n) = 0.8y(n — 1) = z(n)

to z(n) = &(n). Since y(0) = 1, it folows that ¢ = 1. Then, the impulse response of the original
system is

h(n) = 2(0.8)"u(n)+3(08)" 'u(n - 1)
= 26(n)+ 4.6(0.8)" 'u(n — 1)

(b) The inverse system is characterized by the difference equation
1
z(n) = —1.5z(n ~ 1) + Ey(n) 0.4y(n - 1)

Refer to fig 2.49-1

2.51
(a)
ym) = o)+ galn -3 +un D)
for z(n) = &(n), we have
1112222
h(n) = {51:_3',3,'3:5:5155-“}
(b)
1 1 1
y(n) = yln-1+ gy - 2) + 5z(n - 2)
with z(n) = &(n), and
y(-1) = y(-2)=0, we obtain

. o l1311 18 4l }
h(ﬂ_, = 0-; aEyleG: 8' 1281 2561 1024‘



{0

y(n) = ldy(n—1)—0.48y(n — 2} + zin)
with z{(n) = d(n), and
y(-1) = y{—2) =0, we obtain
h(r) = {1,1.4,1.48,1.4,1.2496,1.0774,0.9086,...}
(d) All three systems are IIR.
(e)
y(n) = 1l4y(n-1) - 0.48y{n - 2) + z(n)
The characteristic equation is
A2 —-14X+048 = 0 Hence
A = 08,06 and
ya{n) = ¢1(0-8)" + ¢2(0.6)"For z(n) = d(n). We have,
¢ag+e; = 1land
08¢y +06ca = 14
¢ = 4,
¢y = 3. Therefore
Mn) = [4(0.8)" — 3(0.6)"|u(n)
2.58
From problem 2.57,
h{n) = [e12" + con2™| u(n)
With (0) = 1,%{1) = 3, we have
g = 1
200 +2¢c; = 3
=0y = l
2
Thus h{n) = [2“ + %n?“] u(n)



