Assignment 4

In the on-off keying version of an ASK system, symbol 1 is represented by transmitting a sinusoidal carrier of amplitude $\sqrt{2E_b/T_b}$, where E_b is the signal energy per bit and T_b is the bit duration. Symbol 0 is represented by switching off the carrier. Assume that symbols 1 and 0 occur with equal probability.

For an AWGN channel, determine the average probability of error for this ASK system under the following scenarios:

- Coherent reception.
- P2-

The binary sequence 1100100010 is applied to the DPSK transmitter

- (a) Sketch the resulting waveform at the transmitter output.
- (b) Applying this waveform to the DPSK receiver
 , show that, in the absence of noise, the original binary sequence is reconstructed at the receiver output.
- P3: A PSK signal is applied to a correlator supplied with a phase reference that lies within φ radians of the exact carrier phase. Determine the effect of the phase error φ on the average probability of error of the system.
 - P4: The signal component of a coherent PSK system is defined by

$$s(t) = A_c k \sin(2\pi f_c t) \pm A_c \sqrt{1 - k^2} \cos(2\pi f_c t)$$

where $0 \le t \le T_b$, and the plus sign corresponds to symbol 1 and the minus sign corresponds to symbol 0. The first term represents a carrier component included for the purpose of synchronizing the receiver to the transmitter.

- (a) Draw a signal-space diagram for the scheme described here; what observations can you make about this diagram?
- (b) Show that, in the presence of additive white Gaussian noise of zero mean and power spectral density $N_0/2$, the average probability of error is

$$P_o = \frac{1}{2} \operatorname{erfc} \left(\sqrt{\frac{E_b}{N_0} (1 - k^2)} \right)$$

where

$$E_b = \frac{1}{2} A_c^2 T_b$$

- (c) Suppose that 10 percent of the transmitted signal power is allocated to the carrier component. Determine the E_b/N_0 required to realize a probability of error equal to 10^{-4} .
- (d) Compare this value of E_b/N_0 with that required for a conventional PSK system with the same probability of error.
- Determine the transmission bandwidth reduction and average signal energy of 256-QAM, compared to 64-QAM.
- Two passband data transmission systems are to be compared. One system uses 16-PSK, and the other uses 16-QAM. Both systems are required to produce an average probability of symbol error equal to 10⁻³. Compare the signal-to-noise ratio requirements of these two systems.

P7:

An FSK system transmits binary data at the rate of 2.5×10^6 bits per second. During the course of transmission, white Gaussian noise of zero mean and power spectral density 10⁻²⁰ W/Hz is added to the signal. In the absence of noise, the amplitude of the received sinusoidal wave for digit 1 or 0 is 1 mV. Determine the average probability of symbol error for the following system configurations:

- (a) Coherent binary FSK
- (b) Coherent MSK
- (c) Noncoherent binary FSK
- (a) In a coherent FSK system, the signals $s_1(t)$ and $s_2(t)$ representing symbols 1 and 0, respectively, are defined by

$$s_1(t)$$
, $s_2(t) = A_c \cos \left[2\pi \left(f_c \pm \frac{\Delta f}{2} \right) t \right]$, $0 \le t \le T_b$

Assuming that $f_c > \Delta f$, show that the correlation coefficient of the signals $s_1(t)$ and $s_2(t)$ is approximately given by

$$\rho = \frac{\int_0^{T_b} s_1(t)s_2(t) dt}{\int_0^{T_b} s_1^2(t) dt} \simeq \operatorname{sinc}(2\Delta f T_b)$$

- (b) What is the minimum value of frequency shift Δf for which the signals $s_1(t)$ and $s_2(t)$ are orthogonal?
- (c) What is the value of Δf that minimizes the average probability of symbol error?
- (d) For the value of Δf obtained in part (c), determine the increase in E_b/N_0 required so that this coherent FSK system has the same noise performance as a coherent binary PSK system.
- (a) Sketch the waveforms of the in-phase and quadrature components of the MSK signal in response to the input binary sequence 1100100010.
- (b) Sketch the MSK waveform itself for the binary sequence specified in part (a).

The values of E_b/N_0 required to realize an average probability of symbol error $P_c = 10$ The values of E_b/N_0 required to realize an average probability of symbol circles using coherent binary PSK and coherent FSK (conventional) systems are a given in the text. Using the approximation $Q(u) = \frac{1}{\sqrt{2\pi}u} e^{-u/2}$

determine the separation in the values of E_b/N_0 for $P_e = 10^{-4}$, using

- (a) Coherent binary PSK and DPSK.
- (b) Coherent binary PSK and QPSK.
- (c) Coherent binary FSK (conventional) and noncoherent binary FSK.
- (d) Coherent binary FSK (conventional) and coherent MSK.