Concordia University Department of Electrical and Computer Engineering ELEC462: Digital Transmission Systems

Midterm Exam Fall 2000

- 1) A white Gaussian random process with two-sided power spectral density $\frac{N_0}{2}$ is applied to the circuit of Figure 1.
 - a) Find the power spectral density of the output process. (3 Marks.)
 - b) Find the autocorrelation function of the output process (2 Marks.)

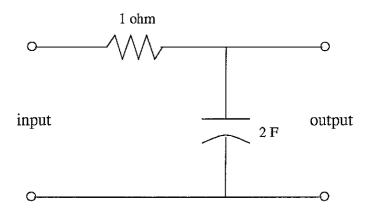


Figure 1

- 2) Ten analog sources each with a highest frequency component of 4.5 kHz. are to be sampled, quantized (using a uniform quantizer) and time multiplexed.
- a) Find the minimum number of samples (per second) required to represent each source (1 Mark.)
- b) If the required Signal-to-Quantization-Noise-Ratio is 38 dB determine the number of bits required to quantize each sample (2 Marks). Make any reasonable assumptions you deem necessary.
- c) Find the frame duration, the number of bits in each frame and the bit rate at the output of the demultiplexer (3 Marks).
- 3) Information is being transmitted from point A to point C via point B. At point B, data is demodulated and modulated again and then is sent to point C. If the probability of bit error between A and B is $P_{AB} = 0.1$ and from point B to C is $P_{BC} = 0.2$ what is the overall probability of error, i.e., the probability of error from A to C (3 Marks).

4- A stationary process x(t) has the following values for its auto-correlation function:

$$R_x(0) = 1.$$

$$R_x(1) = 0.9.$$

$$R_x(2) = 0.81.$$

- a) Calculate the coefficients of the optimum linear predictor with two unit delays (2 Marks.)
- b) Calculate the resulting prediction error (1 Marks.)
- 5- For the signal s(t) of Figure 2,
 - a) Find the matched filter (1 Mark).
 - b) Plot the output of the matched filter as a function of time (2Marks.)

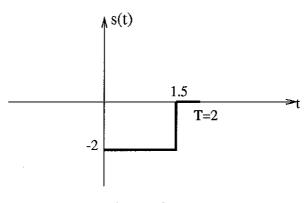


Figure 2