1-7 Pager-only receives, doesn't transmit
1-8 Cell phone - transmits over longer distances than cordless phone
1-9] If the user has one 3-minute call every day the battery life $=\frac{60 \times 1000(\mathrm{~mA}-\text { minute })}{(60 \times 24-3) \times 35+3 \times 250(\text { mA -minute })}$

$$
\doteq 1.175 \text { days } \doteq 28 \cdot 2 \text { hours }
$$

If the user has one 3 -minute call every 6 hours
the batting life $=\frac{60 \times 1000}{(60 \times 6-3) \times 35+3 \times 250} \times 6=27.18$ hours
If the user has one 3 -minute call every hour.
the battery life $=\frac{60 \times 1000}{(60-3) \times 55+3 \times 250} \doteq 21.86$ hours
The maximum talk time $=\frac{60 \times 1000}{250}=240$ minutes $=4$ hours

1. Battery $=1000 \mathrm{~mA} / \mathrm{hr}$

Call $=250 \mathrm{~mA}$
Receiver $=35 \mathrm{~mA}$
Call Duration $=3 \mathrm{~min}=0.05 \mathrm{hr}$
a) If the user makes one 3-minute call every day...

Average battery life $=$
during call: ${ }^{{ }^{r}} \mathbf{c}=250 \mathrm{~mA} \cdot(0.05 \mathrm{hr})=12.5 \mathrm{~mA} \cdot \mathrm{hr}$
during rec: ${ }^{r_{w}}=35 \mathrm{~mA} \cdot \frac{(1440-3 \mathrm{~min})}{60}=838.25 \mathrm{~mA} \cdot \mathrm{hr}$
total for 1 day $=850.75 \mathrm{~mA} \cdot \mathrm{hr}$
Average life $=\frac{1000 \mathrm{~mA} \cdot \mathrm{hr}}{850.75 \mathrm{~mA} \cdot \mathrm{hr}} \cdot 24 \mathrm{hr} \quad=\mathbf{2 8 . 2 1}$ hours
b) If the user makes 1 call every 6 hours...

Average battery life $=$
during call: ${ }^{r_{c}}=12.5 \mathrm{~mA} \cdot \mathrm{hr}$
during rec: $r_{w}=\frac{357}{60} \cdot 35=208.75 \mathrm{~mA} \cdot \mathrm{hr}$
avg. For $1 \mathrm{call} / 6 \mathrm{hrs}=220.75 \mathrm{~mA} \cdot \mathrm{hr}$
Average life $=^{\frac{1000 \mathrm{ma} \cdot \mathrm{hr}}{220.75 \mathrm{ma} \cdot \mathrm{hr}} \cdot 6 \mathrm{hr}}=27.18 \mathrm{hr}$
If the user makes 1 call every hour...
Average battery life $=$
during call: ${ }^{I_{c}}=12.5 \mathrm{~mA} \cdot \mathrm{hr}$
during rec: $r_{w}=\frac{57}{60} \cdot 35=33.25 \mathrm{~mA} \cdot \mathrm{hr}$
avg. For $1 \mathrm{call} / \mathrm{hr}=45.75 \mathrm{~mA} \cdot \mathrm{hr}$
1.10 Cont'd

Average life $=^{\frac{1000 \mathrm{ma} \cdot \mathrm{hr}}{45.75 \mathrm{ma} \cdot \mathrm{hr}} \cdot \mathrm{hr}}=21.86 \mathrm{hr}$
Maximum talk time $=\frac{1000 \mathrm{ma} \cdot \mathrm{hr}}{250 \mathrm{~mA}}=4$ hours

3 battery states

$$
\mathrm{idle}=1 \mathrm{~mA}
$$

wake-up $=5 \mathrm{~mA}$
transceiver $=\mathrm{mA}$
Average battery life $=$
In order to verify the influence of the duration of these periods (idle, wake-up, and transceiver), let us write the expression for 1 hour:

1 hour:
1 Tc -hour call
1 Tw-hour wake-up mode
1 T-hour idle mode
So we can write:
$1 \mathrm{~A} \cdot \mathrm{hr}=$
$u\left\{T_{\varepsilon} \times 0.25 A+N_{x} t_{w} \times 0.035 A+\left[N\left(T-T_{w}\right)-T_{\varepsilon}\right] 0.001\right\}$
where $u=$ \# of hours of battery life

Observe that we consider that the call occurs during idle mode.

1.10 Cont'd

\% Text 1.10
\% Battery life for one 3 minute call every hour
for $i=1: 100$ $x(i)=1 /(((i / 100) *(57 / 60) * 0.005)+(((100-i) / 100) *(57 / 60) * 0.001)+(0.25 * 3 / 60) \swarrow$);
end
plot (x, 'o');
hold on;
\% Battery life for one 3 minute call 6 hours
for $j=1: 100$
$Y(j)=(1 /(((j / 100) *(357 / 60) * 0.005)+(((100-j) / 100) *(357 / 60) * 0.001)+(0.25 * 3 / \downarrow$
60)))*6;
end;
plot (y) ;
hold on;
\% Battery life for one 3 minute call every day
for $k=1: 100$
$z(k)=(1 /(((k / 100) *(1437 / 60) * 0.005)+(((100-k) / 100) *(1437 / 60) * 0.001)+(0.25 *$ 人 $3 / 60$)) * 24 ;
end;
plot (z, ' +');
xlabel('Duty Cycle');
ylabel('Battery Life Time');
title('Battery life vs Duty Cycle');
1.10 Cont'd

Now, defining he duty cycle by,

$$
D=\frac{T_{w}}{T} \rightarrow T_{w}=D T
$$

Also, since N is the \# of cycles during 1 hour, $1=\mathrm{NT}$
So, we can rewrite the expression for the battery life as:

$$
1=u\left\{T_{c} 0.25 A+D 0.035 A+\left[1-D-T_{c}\right] 0.001\right\}
$$

or

$$
u=\left\{T_{s} 0.25 A+D 0.035 A+\left[1-D-T_{\varepsilon}\right] 0.001\right\}^{-1}
$$

hours
In the figure on page 7a, we can see the curve for battery life x duty cycle for one 3 min . call/day, four 3 min . calls $/$ day, and 243 min . calls $/$ day.

We observe that since the power required by the phone during a call is much higher (250 mA) than during idle and wake-up states, the battery life is reduced dramatically.

FIII For 3-minute call/dyy
battery life $=\frac{60 \times 1000(\mathrm{~mA}-\text { minute })}{(60 \times 24-3) \times 5+3 \times 80} \doteq 8.08$ days $=193.94$ hours For 3 minute-call / 6 hours, battery life $=\frac{60 \times 1000}{(60 \times 6-3) \times 5+3 \times 80} \times 6=177.78$ hours

For 3 minute-call/howr-
battery life $=\frac{60 \times 1000}{(60-3) \times 5+3 \times 80}=114.29$ hows
The maximum talk time $=\frac{60 \times 1000}{80}=750$ minutes $=12.5$ hours

CHAPTER 3
3.1 Generally, for $N=i^{2}+i j+j^{2}$, we can do the following to find the nearest co-channel neighbors of a particular cell:
(1) move i cells along any chain of hexagons and then
(2) turn to degree counter-clockwise and move icells From the following figure, using the cosine law, we have

$$
D^{2}=\left[i \cdot\left(2 R^{\prime}\right)\right]^{2}+\left[j \cdot\left(2 R^{\prime}\right)\right]^{2}-2 i \cdot\left(2 R^{\prime}\right)-j \cdot\left(2 R^{\prime}\right) \cdot \cos 120^{\circ}
$$

where $R^{\prime}=\frac{\sqrt{3}}{2} R$, therefore

$$
\begin{aligned}
D & =\sqrt{3 i^{-2} \cdot R^{2}+3 j^{2} \cdot R^{2}+i \cdot j \cdot 3 R^{2}} \\
& =\sqrt{3\left(i^{2}+i \cdot j+j^{2}\right)} \cdot R \\
& =\sqrt{3 N} \cdot R
\end{aligned}
$$

Hence, $Q=\frac{D}{R}=\sqrt{3 N}$

3-4 (a) $20 \mathrm{MHz} /[25 \mathrm{kHz} \times 2]$. 400 channels
(b) $400 / 4=100$

3-5 (a) Let i be the number of co-channel. interfering cells, for omni-derectional antennas, $i_{0}=6$. Assume $n=4$, we have $\frac{S}{I}=\frac{(\sqrt{3 N})^{n}}{i_{0}}>15 d B=31.623 \Rightarrow N>4.59$

$$
\Rightarrow \quad N=7
$$

(b) For 120° sectoring, $i_{0}=2$.

$$
\frac{5}{I}=\frac{(\sqrt{3 N})^{n}}{i 0}>31.623 \Rightarrow N>2.65 \Rightarrow N=3
$$

(c) For 60° sectring, $i_{0}=1$.

$$
\frac{S}{I}=\frac{(\sqrt{3 N})^{n}}{i_{0}}>31.623 \Rightarrow N>1.87 \Rightarrow N=3
$$

From (a), (b) and (c) we can see that using 120° vectoring can increase the capacity by a factor of $7 / 3$, or 2.333 . Although using 60° sectoring can also increase the capacity by the same factor. it will decrease the trunking efficiency. therefore we choose the 120° sectoring.
3.6 solution not available
a) Calls are not lost due to weak signal condition during handoff if:

$$
\begin{equation*}
\frac{\text { distance traveled during handoff }}{\text { mobile speed }}=\frac{d_{\min }-d_{H O}}{v} \geq 4.5 \text { seconds } \tag{2}
\end{equation*}
$$

* $d_{\text {min }} \Rightarrow$ received power at $B S_{1}$ reaches $P_{r, \text { min }}$

$$
\begin{equation*}
P_{r, \min }=-29 \log _{10}\left(d_{\min }\right) \Rightarrow d_{\min }=10^{-P_{r . \min } / 29}=1083 \mathrm{~m} \tag{3}
\end{equation*}
$$

* $d_{H O} \Rightarrow$ received power at $B S_{1}$ reaches $P_{r, H O}$

$$
\begin{equation*}
P_{r, H O}=-29 \log _{10}\left(d_{H O}\right) \Rightarrow d_{H O}=10^{-P_{H O} / 29} \tag{4}
\end{equation*}
$$

Using (2),

$$
\begin{gather*}
\frac{1083-10^{-P_{r . H \rho} / 29}}{22.22(m / s)} \geq 4.5 \text { seconds } \tag{5}\\
P_{H O} \geq-86.8 \mathrm{dBm} \tag{6}
\end{gather*}
$$

Thus,

$$
\begin{equation*}
\Delta=P_{r, H O}-P_{r, \min } \Rightarrow \Delta \geq 1.2 \mathrm{~dB} \tag{7}
\end{equation*}
$$

b) If we set Δ too large, several unnecessary handoffs will be requested and performed, increasing the signaling traffic between the base stations and mobile switching center (MSC). On the other hand, if Δ is too small, that is, $P_{r, H O}$ is only slightly greater than $P_{r, \text { min }}$, there will not be enough time to complete the handoff (especially for high speed mobiles), and calls may be lost due to weak signal condition.

3-8 For $n=3$.
(a) $i_{0}=6, \quad \frac{S}{I}=\frac{(\sqrt{3 N})^{n}}{i_{0}}>31.623 \Rightarrow N>1 i \Rightarrow N=12$
(b) $i_{0}=2, \quad \frac{5}{I}=\frac{(\sqrt{3 N})^{n}}{i_{0}}>31.623 \Rightarrow N>5.29 \Rightarrow N=7$
(c) $i_{0}=1, \frac{5}{I}=\frac{(\sqrt{3 N})^{n}}{i_{0}}>31.623 \Rightarrow N>3.33 \Rightarrow N=4$

From (a), (b) and (c), we can see that using 60° sectoring can increase the capacity by a factor of $12 / 3$, or 4 . For 120° sectoring, this factor is only $12 / 7$, or 1.714 . Therefore, we choose the 60° sectoring.

3-10
(a) $\frac{24 \mathrm{MHz}}{2 \cdot 30 \mathrm{kHz}}=400$ channels

$$
\frac{400 \text { channels }}{4 \text { cells }}=100 \text { channels } / \mathrm{cell}
$$

(b) 90% of 100 Erlangs $=90$ Erlangs

$$
90=U A u=U(0.1) \Rightarrow U=900 \text { users }
$$

(c) offered: $90 E ; C=100 \Rightarrow 0.03$ from graph (Fig.3-6) $3 \% \operatorname{GOS}$
(d) Each sector has 33.3 channels; $\operatorname{GOS}=3 \%$

$$
\underset{\left(\text { from }{ }_{3-6)}\right.}{ } \Rightarrow z 25 \text { Erlangs } / \text { sector }
$$

(Fig. 3-6)

$$
\begin{gathered}
25=U A u(\text { sect }) \\
\Rightarrow U=250 \times 3 \text { sectors } \\
U=750 \text { users }
\end{gathered}
$$

(e) $\frac{2500 \mathrm{~km}^{2}}{5 \mathrm{~km}^{2}}=500$ cells $\Rightarrow 500 \times 900$ users $/ \mathrm{cell}=450,000$ users
$(f) 500$ cells $\Rightarrow 500 \times 750$ user/cell $=375,000$ users
3.11 By the same method used in example 3-9, when going from anni-directional antennas to 60° sectored antennas, the number of channels per sector $=\frac{57}{6}=9.5$. Given $\operatorname{Pr}[$ blocking $]=1 \%$, from the Erlang B distribution we have the total offered traffic intensity per sector $A=4.1$. Ehlengs. For $\mu=1$ call/hour. $H=2$ minute/call, the number of calls that each seach sector can handle per hour is

$$
U=\frac{A}{u H}=\frac{4 \cdot 1}{\frac{1}{60} \cdot 2}=123 \quad u \operatorname{set} 5
$$

\Rightarrow cell capacity $=6 \times 123=738$ users, from example 2.9.
\Rightarrow loss in trunking efficiency $=1-\frac{738}{1326} \doteq 0.44=44 \%$
(EIRP $=32$ watts, cell radius $=10 \mathrm{~km}$. GOS is 5%, blocked calls cleared. $\mathrm{H}=2$ minutes, and $\mu=2$ calls pr hour. Assume cell will be split into 4 cells.)
a) What is the current capacity of the "Radio Knob" cell?

Using the functions defined in problem 2.7
$\begin{array}{lll}\mu:=2 & H:=\frac{2}{60} & A_{4}:=0.067 \text { Erlangs } \\ \mathrm{P}:=.05 & \text { Probability of blocked calls } \\ \mathrm{C}:=57 & \text { Assume } \mathrm{N}=7 \text { cell, AMPS } \\ \mathrm{A}:=40 & \text { Initial guess } \\ A_{1}(P, C):=r o o t(G O S(A, C)-P, A) & \\ A_{r}(P, C)=51.528 & \text { Erlangs }\end{array}$
Number of users is $U:=\frac{A_{T}(P, C)}{A_{U}} U=772.921 \quad$ or $\quad 772$ users
b) What is the radius and transmit power of the new cells?

Since the 4 new cells must cover the area of the old cell, the radius of the new cells must be $R / 2$, where R is the radius of the old cell. Then the area covered by the new cells is
$4 \pi\left(\frac{R}{2}\right)^{2}:=4 \pi\left(\frac{R^{2}}{4}\right)=\pi R^{2} \quad$ which equals the area of the original cell

3-12 contd
To maintain the same SNR, the power at the edge of the new cells must equal the power at the edge of the original cell or
$P_{\text {org }}:=P_{\text {new }} \quad P_{1} R^{-4}:=P_{2}\left(\frac{R}{2}\right)^{-4} \quad$ and $\quad P_{2}:=\frac{P_{1}}{16}$
where P_{1} and P_{2} are the powers of the base station in the old and new cells respectively.
If $P_{1}=32$ watts, then $P_{2}=2$ watts.
c) How many channels are needed in the new cells to maintainsfrequency reuse stability in the system?
$C:=57 \quad$ Each new cell gets the number of channels of the original cell once the cell splitting process is complete.
d) It traffic is uniformly distributed, what is the new traffic carried by each new cell? Will the probability of blocking in these new cells be below 0.1% after the split?
$\mathrm{U}:=\frac{772}{4}$
U=193 users per new cell
$\mathrm{A}:=\mathrm{U} \cdot \mathrm{A}_{\mathrm{u}} \quad \mathrm{A}=12.867$ Erlang
$\operatorname{GOS}(12.87,57)=0 \quad$ The probability of blocking is less than $.1 \%$
-13 Since users are uniformly distributed over the area, each cell in the cluster is assigned the same number of channels:
where

$$
\begin{equation*}
N_{C}=\frac{M}{N} \tag{8}
\end{equation*}
$$

$$
\begin{align*}
N_{C} & =\text { number of channels per cell } \\
M & =\text { number of channels available in the system (} 300 \text { channels) } \\
N & =\text { cluster size } \tag{9}
\end{align*}
$$

Given the number of channels per cell and the designed blocking probability $P_{8}=1 \%$, we can compute the maximum carried traffic per cell in Erlang (C_{C}) using the Erlang B formula

$$
\begin{equation*}
C_{C}=\operatorname{Erlang}\left(N_{C}, P_{\mathrm{b}}\right), \tag{10}
\end{equation*}
$$

and the maximum carried traffic in the system C :

$$
\begin{equation*}
C=C_{C} \times 84 \tag{11}
\end{equation*}
$$

Since each user offers a traffic of 0.04 Erlangs, the maximum number of users supported by the system is

$$
\begin{equation*}
N_{U}=\frac{C}{0.04} \tag{12}
\end{equation*}
$$

Table 2: Number of channels per cell (N_{C}), carried traffic per cell (C_{C}), total carried traffic in the system (C), and maximum number of users in the system (N_{U}), for cluster sizes $N=4,7$ and 12 . Blocking probability 1%.

Cluster size N	channels per cell $\left(N_{C}\right)$	carried traffic per cell $\left(N_{C}\right)$	total carried traffic C	number of users N_{U}
4	75	60.73 Erl	5101.09 Erl	127527
7	42	30.77 Erl	2584.81 Erl	64620
12	25	16.12 Erl	1354.49 Erl	33862

3-17) area of a cell (hexagon) $=\frac{3 \sqrt{3}}{2} \cdot r^{2}=\frac{3 \sqrt{3}}{2} \cdot(0.4701)^{2}=0.574 \mathrm{~km}^{2}$ number of users in a cell $U=$ area of a cell x user density

$$
\begin{aligned}
&=0.574 \times 9000=5167 \text { users } \\
& \Rightarrow A=U \cdot \mu \cdot H=5167 \times \frac{1}{60} \times 1=86.1 \text { Erlangs. }
\end{aligned}
$$

Given $C=90$, from Erlang C chart, we have the probability that a call will be delayed

$$
\begin{aligned}
& \operatorname{Pr}[\text { delay }>0]=0.5 \\
& \Rightarrow \operatorname{Pr}[\text { delay }>\text { do sec }]=\operatorname{Pr}[\text { delay }>0] \cdot \operatorname{Pr}[\text { delay }>\text { ado delay }] \\
&=0.5 \times \exp [-(90-86.1) \times 20 / 60] \\
&=0.136
\end{aligned}
$$

