a) Mininum $S I R$

In order to compute the minimun SIR at the mobile, we need to determine the number of interfering base stations in each possible configuration, which can be done by inspecting Figures 1 and 2 . Table 1 shows the number of interfering base stations in the first tier, when 3 sectors ($B W=120^{\circ}$) and 6 sectors ($B W=60^{\circ}$) are used, for cluster sizes $N=3$ and 4 .
Using expression (1), we determine the minimum SIR (approximation) in each configuration (path loss exponent $n=4$). Results are shown in Table 2.
Therefore, cluster size $N=3$ cannot be used, since the minimum SIR achieved is below $S I R=18.7 \mathrm{~dB}$. On the other hand, both configurations using cluster size $N=4$ are feasible, regarding co-channel interference (assuming that a difference of 0.1 dB is negligible).
b) Maximum carried traffic per cell

Let us now computer the carried traffic per cell, when sectoring is used. As we know, each sector is assigned a subset of the set of channels assigned to the cell.

For example, for cluster size $N=3$, each cell is assigned $300 / 3=100$ channels. If six sectors are employed, each sector is assigned $100 / 6 \approx 16$ channels. Using Erlang B formula, we find that each sector carries a maximum traffic of 9.83 Erlangs at a blocking probability of 0.02 . Therefore, the maximum traffic carried by each cell is $9.83 \times 6=58.97$ Erlangs. Repeating this procedure, we can compute the maximum carried traffic per cell for other beamwidths and cluster sizes. Table 3 presents the results.

Table 1: Number of interfering base stations in the first tier (i_{0}) when 3 sectors ($B W=120^{\circ}$) and 6 sectors ($B W=60^{\circ}$) are used.

N	$B W=60^{\circ}$	$B W=120^{\circ}$
3	2	3
4	1	2

Table 2: Minimum $S I R$ achieved when sectoring is used, for cluster sizes $N=3$ and 4.

N	$B W=60^{\circ}$	$B W=120^{\circ}$
3	16.1 dB	14.3 dB
4	21.6 dB	18.6 dB

Table 3: Maximum carried traffic per cell (in Erlangs) when sectoring is used, for cluster sizes $N=3$ and 4.300 channels available in the system, $P_{b}=2 \%$

N	$B W=60^{\circ}$	$B W=120^{\circ}$
3	58.97	73.88
4	39.69	52.51

Cluster size $N=3$

Figure 1: Cluster size $N=3$, three \&' six sectors

Cluster size $N=4$

Figure 2: Cluster size $N=4$, three is six sectors

$$
\begin{align*}
G_{t} & =G_{r}=29 \mathrm{~dB} \tag{10}\\
P_{t} & =30 \mathrm{dBm} \tag{11}\\
\lambda & =\frac{c}{f}=0.005 \mathrm{~m} \tag{12}\\
d_{0} & =1 \mathrm{~m} \tag{13}\\
d_{1} & =100 \mathrm{~m} \tag{14}\\
d_{2} & =1000 \mathrm{~m} \tag{15}\\
P L\left(d_{0}\right) & =20 \log _{10} \frac{4 \pi d_{0}}{\lambda}=20 \log _{10} \frac{4 \pi}{0.005}=68 \mathrm{~dB} \tag{16}\\
P L\left(d_{1}\right) & =P L\left(d_{0}\right)+20 \log _{10} \frac{d_{1}}{d_{0}}=108 \mathrm{~dB} \tag{17}\\
P L\left(d_{2}\right) & =P L\left(d_{0}\right)+20 \log _{10} \frac{d_{2}}{d_{0}}=128 \mathrm{~dB} \tag{18}\\
P_{r} & =P_{t}+G_{t}+G_{r}-P L=30+29+29-P L=88-P_{L} \tag{19}\\
P_{r}\left(d_{0}\right) & =88-68=20 \mathrm{dBm} \tag{20}\\
P_{\mathrm{r}}\left(d_{1}\right) & =88-108=-20 \mathrm{dBm} \tag{21}\\
P_{r}\left(d_{2}\right) & =88-128=-40 \mathrm{dBm} \tag{22}\\
V & =\sqrt{4 P_{r} R_{a n t}} \tag{24}\\
V\left(d_{1}\right) & =0.0447 \mathrm{v} \tag{25}\\
V\left(d_{2}\right) & =0.0045 \mathrm{v}
\end{align*}
$$

4.5

$$
\begin{aligned}
& \Gamma_{1}=\frac{-\epsilon_{2} \sin \theta_{1}+\sqrt{\epsilon_{2}-\cos ^{2} \theta_{i}}}{\epsilon_{2} \sin \theta_{i}+\sqrt{\epsilon_{2}-\cos ^{2} \theta_{i}}} \\
& \Gamma_{\perp}=\frac{\sin \theta_{i}-\sqrt{\epsilon_{2}-\cos ^{2} \theta_{i}}}{\sin \theta_{i}+\sqrt{\epsilon_{2}-\cos ^{2} \theta_{i}}}
\end{aligned}
$$

At $\theta_{i}=30^{\circ}$

	Ground	Brick	Limestone	Glass	Water
ϵ_{f}	15	4.44	7.51	4	81
I_{1}	-0.33	-0.07	-0.18	-0.05	-0.64
T_{1}	-0.77	-0.59	-0.68	-0.57	-0.89

4.7 When $\theta=\theta_{i}, \quad \Gamma_{11}=0$

$$
\begin{aligned}
& \Rightarrow \Gamma_{1}=\frac{-\varepsilon_{r} \sin \theta_{i}+\sqrt{\varepsilon_{r}-\cos ^{2} \theta_{i}}}{\varepsilon_{r} \sin \theta_{i}+\sqrt{\varepsilon_{r}-\cos ^{2} \theta_{i}}}=0 \\
& \Rightarrow-\varepsilon_{r} \cdot \sin \theta_{i}+\sqrt{\varepsilon_{r}-\cos ^{2} \theta_{i}}=0 \\
& \Rightarrow \sqrt{\varepsilon_{r}-\cos ^{2} \theta_{i}}=\varepsilon_{r} \cdot \sin \theta_{i} \\
& \Rightarrow\left(\varepsilon_{r}^{2}-1\right) \sin \theta_{i}=\varepsilon_{r}-1 \\
& \Rightarrow \sin \theta_{i}=\frac{\sqrt{\varepsilon_{r}-1}}{\sqrt{\varepsilon_{r}^{2}-1}}
\end{aligned}
$$

4.8 (a) The advantages of the two-ray ground reflection model in the analysis of path loss is that it considers both the direct path and a ground reflected propagation path between transmitter and receiver. The disanentage is that this model is oversimplified in that it dies not include important factors such as terrain profile, vegetation and buildings.
(b) Generally, when $d>10\left(h_{t}+h_{r}\right)$, we can say that $d \gg h_{t}+h_{r}$, and thus may apply the two ray model.
For $h_{t}=35 \mathrm{~m}, h_{r}=3 \mathrm{~m}, d=250 \mathrm{~m}$

$$
d<10\left(h_{t}+h_{r}\right)=380 \mathrm{~m}
$$

Hence the two ray model could nat be applied.

$$
\begin{gathered}
\text { For } h_{t}=30 \mathrm{~m}, h_{r}=1.5 \mathrm{~m}, d=450 \mathrm{~m} \\
d>10\left(h_{t}+h_{r}\right)=315 \mathrm{~m}
\end{gathered}
$$

Hence the two ray model could be applied.
4.8 Cont'd
(c) Using the two ray model, we can see that at large distances, the received power falls off with distance raised to the fourth power or at a rate of $40 \mathrm{~dB} /$ decade, and the received power and path loss are independent of frequency
4.9

$$
\begin{aligned}
\Delta & =d^{\prime \prime}-d^{\prime} \\
& =\sqrt{\left(h_{t}+h_{r}\right)^{2}+d^{2}}-\sqrt{\left(h_{t}-h_{r}\right)^{2}+d^{2}} \\
& =d\left[1+\left(\frac{h_{t}+h_{r}}{d}\right)^{2}\right]^{\frac{1}{2}}-d\left[1+\left(\frac{h_{t}-h_{r}}{d}\right)^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

For $d \gg h_{t}+h_{r}, \quad\left(\frac{h_{t}+h_{r}}{d}\right)^{2} \ll 1, \quad\left(\frac{h_{t}-h_{r}}{d}\right)^{2} \ll 1$.
Using Taylor series approximation, we have

$$
\begin{aligned}
\Delta & \approx d\left[1+\frac{1}{2}\left(\frac{h_{t}+h_{r}}{d}\right)^{2}\right]-d\left[1+\frac{1}{2}\left(\frac{h_{t}-h_{r}}{d}\right)^{2}\right] \\
& =d \cdot \frac{1}{2}\left[\left(\frac{h_{t}+h_{r}}{d}\right)^{2}-\left(\frac{h_{t}-h_{r}}{d}\right)^{2}\right] \\
& =d \cdot \frac{1}{2} \cdot \frac{4 h_{t} \cdot h_{r}}{d^{2}} \\
& =\frac{2 \cdot h_{t} \cdot h_{r}}{d}
\end{aligned}
$$

4.10 When $d \gg h_{t}$ the, we have $\theta_{\Delta}=\frac{2 \pi}{\lambda} \cdot \frac{2 h_{t} \cdot h_{r}}{d}$

$$
\begin{aligned}
& \Rightarrow d=\frac{4 \pi}{\lambda} \cdot \frac{h_{r} \cdot h_{r}}{\theta_{\Delta}} \\
& \tan \theta_{i}=\frac{h_{t}+h_{r}}{d}<\tan 5^{\circ} \Rightarrow \frac{h_{t}+h_{r}}{\frac{4 \pi}{\lambda} \cdot \frac{h_{t} \cdot h_{r}}{\theta_{\Delta}}<\tan 5^{\circ}} \\
& \Rightarrow \frac{1+\frac{h_{r}}{h_{t}}}{\frac{4 \pi}{\lambda} \cdot \frac{h_{r}}{\theta_{\Delta}}}<\tan 5^{\circ} \Rightarrow h_{t}>\frac{\frac{h r}{4 \pi \cdot h_{r} \cdot \tan 5^{\circ}}}{\lambda \cdot \theta_{\Delta}}-1
\end{aligned}
$$

For $h_{r}=2 \mathrm{~m}, \theta_{\Delta}=6.261, \lambda=\frac{c}{f}=\frac{3 \times 10^{8}}{9 \times 10^{2}}=0.333 \mathrm{~m}$

$$
\Rightarrow h_{t}>\frac{2}{\frac{4 \pi \times 2 \times \tan 5^{\circ}}{\frac{1}{3} \times 6.261}-1} \Rightarrow h_{t \text { min }}=37.7 \mathrm{~m}
$$

4.15 We need to find a d_{f} such that $\Delta=d^{\prime \prime}-d=\frac{\lambda}{2}$.

$$
\begin{aligned}
& \Delta=d^{\prime \prime}-d=\sqrt{\left(h_{t}+h_{r}\right)^{2}+d_{f}^{2}}-\sqrt{\left(h_{t}-h_{r}\right)^{2}+d_{f}^{2}} \\
& \Rightarrow \sqrt{\left(h_{t}+h_{r}\right)^{2}+d_{f}^{2}}-\sqrt{\left(h_{t}-h_{r}\right)^{2}+d_{f}^{2}}=\frac{\lambda}{2} \\
& \Rightarrow\left(h_{t}+h_{r}\right)^{2}+d_{f}^{2}=\left(h_{t}-h_{r}\right)^{2}+d_{f}^{2}+\frac{\lambda^{2}}{4}+\lambda \cdot \sqrt{\left(h_{t}-h_{t}\right)^{2}+d_{f}^{2}} \\
& \Rightarrow d_{f}=\sqrt{\frac{16 h_{t}^{2}-h_{t}^{2}}{\lambda^{2}}-\left(h_{t}^{2}+h_{r}^{2}\right)+\frac{\lambda^{2}}{16}}
\end{aligned}
$$

4.16 (a)

$$
\begin{aligned}
& P_{1}=\sqrt{d_{1}+h^{2}}=d_{1} \sqrt{1+\left(\frac{h}{d_{1}}\right)^{2}} \\
& P_{2}=\sqrt{{d d_{2}^{2}+h^{2}}_{2}^{2}}=d_{2} \sqrt{1+\left(\frac{h}{d_{2}}\right)^{2}}
\end{aligned}
$$

Since $d_{1}, d_{2} \gg h \gg \lambda, \frac{h}{d_{1}}, \frac{h}{d_{2}} \ll 1$. Using Taylor series approximation, we have

$$
\begin{aligned}
P_{1} & \doteq d_{1}\left[1+\frac{1}{2}\left(\frac{h}{d_{1}}\right)^{2}\right]=d_{1}+\frac{1}{2} \frac{h^{2}}{d_{1}} \\
P_{2} & \doteq d_{2} \cdot\left[1+\frac{1}{2}\left(\frac{h}{d_{2}}\right)^{2}\right]=d_{2}+\frac{1}{2} \frac{h^{2}}{d_{2}} \\
\Rightarrow \Delta & =P_{1}+P_{2}-\left(d_{1}+d_{2}\right) \\
& \doteq\left(d_{1}+\frac{1}{2} \frac{h^{\prime}}{d_{1}}\right)+\left(d_{2}+\frac{1}{2} \frac{h^{2}}{d_{2}}\right)-\left(d_{1}+d_{2}\right) \\
& =\frac{h^{2}}{2}\left(\frac{d_{1}+d_{2}}{d_{1} d_{2}}\right)
\end{aligned}
$$

and $\varnothing=\frac{2 \pi \Delta}{\lambda} \doteq \frac{2 \pi}{\lambda}\left[\frac{h^{2}}{2}\left(\frac{d_{1}+d_{2}}{d_{1} d_{2}}\right)\right]$.
(b) From the definition of $\nu, \frac{\nu^{2} \pi}{2}=\varnothing$

$$
\begin{aligned}
& \Rightarrow \nu=\sqrt{\not \partial \cdot \frac{2}{\pi}} \\
& \Rightarrow \nu=\sqrt{\frac{2 \pi}{\lambda}\left[\frac{h^{2}}{2}\left(\frac{d_{1}+d_{2}}{d_{1} d_{2}}\right)\right] \cdot \frac{2}{\pi}}=h \cdot \sqrt{\frac{2}{\lambda} \cdot \frac{d_{1}+d_{2}}{d_{1} d_{2}}}
\end{aligned}
$$

Since $\tan \beta=\frac{h}{d_{1}} \ll 1, \tan \gamma=\frac{h}{d_{2}} \ll 1$, we have

$$
\beta \approx \tan \beta=\frac{h}{d_{1}} \quad, \gamma=\tan \gamma=\frac{h}{d_{2}}
$$

4.16 Cont'd

$$
\begin{aligned}
\Rightarrow \alpha & =\beta+\delta^{\prime}=\frac{h}{d_{1}}+\frac{h}{d_{2}}=h\left(\frac{d_{1}+d_{2}}{d_{1} \cdot d_{2}}\right) \\
\Rightarrow h & =\alpha \cdot \frac{d_{1} \cdot d_{2}}{d_{1}+d_{2}} \\
\Rightarrow \nu & =h \cdot \sqrt{\frac{2}{\lambda} \cdot \frac{d_{1}+d_{2}}{d_{1} \cdot d_{2}}}=\alpha \cdot \frac{d_{1} \cdot d_{2}}{d_{1}+d_{2}} \cdot \sqrt{\frac{2}{\lambda} \cdot \frac{d_{1}+d_{2}}{d_{1} \cdot d_{2}}} \\
& =\alpha \cdot \sqrt{\frac{2 d_{1} d_{2}}{\lambda\left(d_{1}+d_{2}\right)}}
\end{aligned}
$$

4.18

Diffracted power decreases with the increase of the frequency as shown in Figure 1.

Figure 1: Diffracted power vs. frequency.
4.19 Given $P_{t}=10 \mathrm{~W}, G_{t}=10 \mathrm{~dB}=10, L=1 d B=1.259$.

$$
G_{r}=3 d B=2, \quad f_{c}=900 \mathrm{MHz}, \quad d=3000+2000=5000 \mathrm{~m},
$$

We have $\lambda_{c}=\frac{c}{f_{c}} \equiv 0.333(\mathrm{~m})$ and free space received power

$$
\begin{aligned}
P_{\text {freespace }} & =\frac{P_{t} \cdot G_{t} \cdot G_{r} \cdot \lambda_{c}^{2}}{(4 \pi)^{2} d^{2} \cdot 1}=\frac{10 \times 10 \times 2 \times 0.333^{2}}{(4 \pi)^{2} \times(5000)^{2} \times 1.259} \\
& =4.48 \times 10^{-9}(\mathrm{n})=-53.5 \mathrm{dBm}
\end{aligned}
$$

For the geometry shown below, we can redraw it in another geometry by approximation.

From the figure above we have
4.19 Cont'd

$$
\begin{aligned}
& \tan \beta=\frac{h_{\text {obstacle }}-h_{t}}{d_{1}}=\frac{400-60}{3000} \doteq 0.1133 \Rightarrow \beta \doteq 0.11285(\mathrm{rad}) \\
& \tan \gamma=\frac{h_{\text {oblate }}-h_{r}}{d_{2}}=\frac{400-5}{2000}=0.1975 \Rightarrow 8 \doteq 0.1950(\mathrm{rad}) \\
& \Rightarrow \alpha=\beta+\gamma=0.11285+0.175 \doteq 0.3078(\mathrm{rad}) \\
& \text { and } \nu=\alpha \cdot \sqrt{\frac{2 d_{1} d_{1}}{\lambda\left(d_{1} d_{2}\right)}}=0.3078 \times \sqrt{\frac{2 \times 3000 \times 2000}{0.333 \times(300+2000)}} \doteq 26.12
\end{aligned}
$$

Using the approximation equation (3.59.e), we obtain

$$
\begin{aligned}
G_{d}(d B) & =20 \cdot \log _{10}\left(\frac{0.225}{2}\right) \quad V>2.4 \\
& =20 \cdot \log _{10}\left(\frac{0.225}{26.12}\right) \\
& \doteq-41.3 d B . \\
\Rightarrow P_{\text {received }} & =P_{\text {freespace }}(d B m)+G_{d} \\
& =-53.5-41.3 \\
& =-94.8 d B m
\end{aligned}
$$

\Rightarrow loss due to diffraction $L d=$ Pfrespace - Prepared $=41.3 d B$
a) Handoff \rightarrow two independent events: $P_{r, 1}<P_{r, H O}$ and $P_{r, 2}>P_{r, \min }$. Therefore, the probability that a handoff occurs is given by

$$
\begin{equation*}
\operatorname{Pr}[\text { handoff }]=\operatorname{Pr}\left[P_{r, 1}<P_{r, H O}\right] \times \operatorname{Pr}\left[P_{r, 2}>P_{r, m i n}\right], \tag{2}
\end{equation*}
$$

where $P_{r, 1}$ and $P_{r, 2}$ are the received signals at $B S_{1}$ and $B S_{2}$, respectively. $P_{r, 1}$ is given by

$$
\begin{align*}
P_{r, 1} & =\underbrace{P_{0}-10 n \log _{10}\left(d_{1} / d_{0}\right)}_{m_{1}}+\chi_{1} \\
& =m_{1}+\chi_{1} . \tag{3}
\end{align*}
$$

Likewise for $P_{r, 2}$

$$
\begin{align*}
P_{r, 2} & =\underbrace{P_{0}-10 n \log _{10}\left[\left(D-d_{1}\right) / d_{0}\right]}_{m_{2}}+\chi_{2} \\
& =m_{2}+\chi_{2} . \tag{4}
\end{align*}
$$

Therefore, for a given distance $d_{1}, P_{r, 1}$ and $P_{r, 2}$ are Gaussian variables with standard deviation σ and means m_{1} and m_{2}, respectively.
Thus, the probability $\operatorname{Pr}\left[P_{r, 1}<P_{r, H O}\right]$ is

$$
\begin{align*}
\operatorname{Pr}\left[P_{r, 1}<P_{r, B O}\right] & =\int_{-\infty}^{P_{r, H O}} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[\frac{-\left(x-m_{1}\right)^{2}}{2 \sigma^{2}}\right] d x \\
& =1-Q\left(\frac{P_{r, H O}-m_{1}}{\sigma}\right) . \tag{5}
\end{align*}
$$

where $Q(x)$ is the Q-function:

$$
\begin{equation*}
Q(x)=\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-y^{2}}{2}\right) d y . \tag{6}
\end{equation*}
$$

Likewise

$$
\begin{align*}
\operatorname{Pr}\left[P_{r, 2}>P_{r, \text { min }}\right] & =\int_{P_{r, \text { min }}}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[\frac{-\left(x-m_{2}\right)^{2}}{2 \sigma^{2}}\right] d x \\
& =Q\left(\frac{P_{r, \min }-m_{2}}{\sigma}\right) . \tag{7}
\end{align*}
$$

Substituting (3)-(7) into (2), we have the probability that a handoff occurs as a function of the distance d_{1}. Figure 2 shows the received area average power at both base stations (m_{1} and m_{2}) (Not required in the homework!). Figure 3 shows the probability that a handoff occurs, along with the probabilities $P_{\tau}\left[P_{r, 1}<P_{r, H o}\right]$ and $\operatorname{Pr}\left[P_{r, 2}>P_{r, m i n}\right]$.
b) From the piot in Figure 3, the distance $d_{n o}$, such that the probability that a handoff occurs is equal to 80%, is $d_{h o} \approx 1000 \mathrm{~m}$.

4.25

Figure 2: Received area average power levels at the mobile, from both base stations.

Figure 3: Probability that a handoff occurs, $\operatorname{Pr}\left[P_{r, 1}<P_{r, H O}\right]$ and $\operatorname{Pr}\left[P_{r, 2}>P_{r, m i n}\right]$
4.28

$$
\begin{aligned}
\text { noise floor } & =K \cdot B_{w} \cdot F \cdot T_{0} \\
& =1.38 \times 10^{-23} \times 30 \times 10^{3} \times 10 \times 290=1.2 \times 10^{-55}(\mathrm{w}) \\
& =-119.2(\mathrm{dBm})
\end{aligned}
$$

\Rightarrow threshold. $\nu=$ noise floor $(d B m)+S N R(d B)$

$$
=-119.2+25=-94.2(d B m)
$$

Given $E I R P=P_{t} \cdot G_{t}=100 \mathrm{~W}, G_{r}=0 d B=1, \quad d_{0}=1 \mathrm{~km}, \lambda=\frac{c}{f}=0.333 \mathrm{~m}$

$$
\begin{aligned}
\operatorname{Pr}\left(d_{0}\right) & =\frac{P_{t} \cdot G_{t} \cdot G_{r} \cdot \lambda^{2}}{(4 \pi)^{2} \cdot d_{0}^{2}}=\frac{100 \times 1 \times 0.333^{2}}{(4 \pi)^{2} \times(1000)^{2}}=7.04 \times 10^{-8}(\mathrm{~W}) \\
& =-41.5 \mathrm{dBm}
\end{aligned}
$$

For $d=10 \mathrm{~km}, n=4$.

$$
\begin{aligned}
& \overline{\operatorname{Pr}(d)}=\operatorname{Pr}\left(d_{0}\right)-10 . n \cdot \log _{10}\left(\frac{d}{d_{0}}\right)=-41.5-40=-81.5 d B_{m} \\
& \Rightarrow \operatorname{Pr}(\operatorname{Pr}(d)>\nu)=Q\left[\frac{\gamma-\overline{\operatorname{Pr}(d)}}{\sigma}\right]=Q\left[\frac{-94.2-(-81.5)}{8}\right] \\
&=Q(-1.5875)=0.944
\end{aligned}
$$

(a) Find the minimum mean square error (MMSE) estimate for the path loss exponent, n.

$+\left[-35-\left(0-100 \log \frac{1000}{100}\right)\right]^{2}+\left[-38-\left(0-1 \operatorname{lon} \log \frac{200}{100}\right)\right]^{2} 2$
(b) Calculate the standard deviation of shadowing about the mean value.

$=625-150 n+9 n^{2}$
$+1225-700 n+100 n^{2}$
$+1444-988 n+169 n^{2}$
$\dot{-} J_{n}=278 n^{2}-1838 n+3294$
$\Rightarrow n=3.30$
(c) Estimate the received power at $d=2 \mathrm{~km}$ using the resulting model.

$$
\begin{aligned}
P_{r}(d) \cdot P_{r}\left(d_{0}\right)-P L(d) & =O d B_{m}-10[3.3] \log _{1}\left(\frac{2000}{100}\right) \\
& =(0-42.94) d B_{m}=-42.94 d B_{m}
\end{aligned}
$$

(d) Predict the likelihood that the received signal level at 2 km will be greater than -35 dBm . Express your answer as a Q-function.

$$
\overbrace{-42.948 B_{m}}^{\text {Ga sd } B_{m}} \text { Find Area under curve }
$$

$$
\begin{aligned}
& \operatorname{Pr}[\operatorname{Pr}(2 \mathrm{~km}) \geq-35 \mathrm{dm}] \\
& =Q\left[\frac{-35-(-42.94)}{8}\right] \quad T_{\text {ALG. sUR AT } 2 \mathrm{kM} \text { using Model }} \\
& =Q\left(\frac{7.93}{8}\right)=Q(0.99) \approx Q(1)
\end{aligned}
$$

