6.12

Assume a binary bit stream is to be modulated on an RF carrier. If the baseband bit stream has a data rate of 1 Megabit per second, then:
(a) What is the first-zero crossing bandwidth of the RE spectrum if simple $T=1 C^{-6} 5$ rectangular pulses are used, assuming BPSK is used?

Rectanquiler. Pulses

(b) What is the absolute bandwidth of the fir spectrum if Thised cosine rollof pulses are used, for $a=1$? Assume BPSK is used.

$$
\begin{aligned}
& \alpha-1 \\
& \mathrm{BW}=(1+1) 10^{6} \\
&=210^{6} \mathrm{~Hz}
\end{aligned}
$$

(c) What is the absolute bandwidth of the RF spectrum if raised cosine rollo pulses are used, for $a=\frac{1}{3}$? Assume BPSK is used.

$$
\text { RF } B W=[1+1 / 3] 10^{6}=1.33310^{6} \mathrm{~Hz}
$$

(d) If a timing jitter of 10^{-6} seconds exists at the receiver and raised cosine rolloff pubes are used, will the detector experience intersymbol interference from the adjacent aymbols? Explain.
Nyourt pisses produce acinI for all k, t such that $t=k F_{5}$ except for $k=0$ (the desired p-lase). If the jitter is exactly $10^{-6} \mathrm{~s}$, then the timing offset is exactly one symbol. Thus, These will be Nc. ISI ex rept for the next 7 symbol, which will be perfectly (e) If GMSK modulation is to be used and A J dB band width of 500 kdiz Is used for the Gaussian low pass Alter, what is the proper choice for the FM peak frequency deviation, ΔF ?

$$
\Delta F=\frac{1}{4 T_{b}}=\frac{R_{0}}{4}=\frac{10^{6}}{4}=250 \mathrm{kHz}
$$

ie. the receiver will in e effsyuc by T.
(Not a function of 3 die an!)
(f) For GMSK modulation using $B T \leq 0.5$, how many spectral sidelobea occur?

No sidethes occur at ET $\angle 1 / 2$
I Will accept two sidebhes (one on each side of worrier)
6.13 For $S N R=30 d B=1000, B=200 \mathrm{KHz}$, the maximum possible data rate, $C=B \cdot \log _{2}\left(H \frac{5}{N}\right)=200 \times 10^{3} \times \log _{2}(1+1000) \doteq 1.99 \mathrm{Mlps}$ The GSM data rate is 270.833 bps . which is only about $0.136 C$
6.14 For $I S-54, R=48.6 \mathrm{kbps}, \quad B=30 \mathrm{KHz}$.

$$
\Rightarrow \eta_{B}=\frac{R}{B}=\frac{48.6}{30}=1.626 \mathrm{ps} / \mathrm{Hz} .
$$

For GSM, $\quad R=270.833 \mathrm{kbps} . B=200 \mathrm{KHz}$

$$
\Rightarrow \eta_{B}=\frac{270.833}{200}=1.35 \mathrm{bps} / \mathrm{Hz}
$$

For $P D C, R=42 \mathrm{kbps}, \quad B=25 \mathrm{kHz} \Rightarrow \eta_{B}=\frac{42}{25}=1.68 \mathrm{bps} / \mathrm{Hz}$
For IS-95, the bandwidth efficiency depends on the number of users K. For $R=9.6 \mathrm{kbps} / \mathrm{s}, B=1.2288 \mathrm{MHz}$.

$$
\Rightarrow \eta_{B}=\frac{K \cdot R}{B}=\frac{K \cdot 9.6 \times 10^{3}}{1.2288 \times 10^{6}} \doteq K \cdot 7.8 \times 10^{-3} \mathrm{bps} / \mathrm{Hz}_{z}
$$

If $S N R=20 d B=100$, the theoretical spectral efficiency

$$
\eta_{B_{\max }}=\log _{2}(1+\mathrm{SNR})=\log _{2}(1+100) \doteq 6.66 \mathrm{bps} / \mathrm{Hz}
$$

6. 15 See the MATLAB program p6-15.m and Fig. P. 6.15 (a) and (b)

$$
H_{R C}(f)= \begin{cases}1 & \begin{array}{l}
1 \\
\frac{1}{2}\left\{1+\cos \left[\frac{\pi \cdot\left(|f| \cdot 2 T_{s}-1+\alpha\right)}{2 \alpha}\right]\right\} \\
0
\end{array} \\
\begin{array}{l}
\frac{(1-\alpha)}{2 T_{s}}<|f| \leq \frac{1-\alpha}{2 T_{s}} \\
\\
|f|>\frac{(\mid 1+\alpha)}{2 T_{s}}
\end{array}\end{cases}
$$

$$
h_{R_{c}}(t)=\frac{\sin \left(\frac{\pi t}{T_{s}}\right)}{\pi t} \cdot \frac{\cos \left(\frac{\pi \alpha t}{T_{s}}\right)}{1-\left(\frac{4 \alpha t}{2 T_{s}}\right)^{2}}
$$

Fraction of the total radiated energy that will fall out-if-baud

$$
=1-\frac{\int_{-15 k}^{15 k} H_{R c}^{2}(f) \cdot\left(\frac{\sin \left(\pi f T_{s}\right)}{\pi f T_{s}}\right)^{2} d f}{\int_{-\frac{1}{2}}^{\substack{(1+0)(\alpha) R_{R} \\ 2}} H_{R c}^{2}(f) \cdot\left(\frac{\sin \left(\pi f T_{s}\right)}{\pi_{f}^{\prime} T_{s}}\right)^{2} d f} \doteq 3 \times 10^{-5}=0.003 \%
$$

6.16 $B T_{s}=0.5, \quad T_{s}=\frac{1}{19.2 \mathrm{KSps}}$ (See also problem 6.27)

$$
\begin{aligned}
& \Rightarrow B=\frac{0.5}{T_{s}}=0.5 \times 19.2 \times 10^{3}=9.6 \mathrm{kHz} \\
& \Rightarrow \alpha=\frac{1.1774}{2 . B}=\frac{1.1774}{2 \times 9.6 \times 10^{3}} \doteq 6.13 \times 10^{-5} \\
& \Rightarrow H_{G}(f)=\exp \left(-\alpha^{2} f^{2}\right)=\exp \left(-3.75 \times 10^{-9} f^{2}\right) \\
& h_{G}(t)=\frac{\sqrt{\pi}}{\alpha} \exp \left(-\frac{\pi^{2}}{\alpha^{2}} t^{2}\right) \doteq 28907.08 \exp \left(-2.62 \times 10^{9} t^{2}\right) \\
& B T_{s}=0.2, \Rightarrow B=\frac{0.2}{T_{s}}=0.2 \times 19.2 \times 10^{3}=3.84 \mathrm{kHz} \\
& \Rightarrow \alpha=\frac{1.1774}{2 \cdot B}=\frac{1.1774}{2 \times 3.84 \times 10^{3}} \doteq 1.533 \times 10^{-4} \\
& \Rightarrow H_{G}(f)=\exp \left(-\alpha^{2} f^{2}\right)=\exp \left(-2.35 \times 10^{-8} f^{2}\right) \\
& h_{G}(t)=\frac{\sqrt{\pi}}{\alpha} \exp \left(-\frac{\pi^{2}}{\alpha^{2}} \cdot t^{2}\right) \doteq 11559 \exp \left(-4.195 \times 10^{8} t^{2}\right) \\
& B T_{S}=0.75, \Rightarrow B=\frac{0.75}{T_{s}}=0.75 \times 19.2 \times 10^{3}=14.4 \mathrm{KHz} \\
& \Rightarrow \alpha=\frac{1.1774}{2 . B}=\frac{1.1774}{2 \times 14.4 \times 10^{3}}=4.088 \times 10^{-5} \\
& \Rightarrow H G(f)=\exp \left(-\alpha^{2} f^{2}\right)=\exp \left(-1.67 \times 10^{-7} \cdot f^{2}\right) \\
& h_{G}(t)=\frac{\sqrt{\pi}}{\alpha} \exp \left(-\frac{\pi^{2}}{\alpha^{2}} \cdot t^{2}\right)=4.334 \times 10^{4} \cdot \exp \left(-5.8998 \times 10^{9} t^{2}\right)
\end{aligned}
$$

The impulse response and frequency response are shown in Fig. pb-16 (a) and (b), respectively. Using the MATLAB program p6.16.M, We can calculate the fraction, Tout, of the total radiated energy that mould fall out- of-band. For $B T_{s}=0.5, \quad F_{\text {out }}=2.32 \times 10^{-3}$ For $B T_{s}=0.2$, Font $=2.21 \times 10^{-7}$ For $B T_{S}=0.75$, Font $=9.91 \times 10^{-3}$

Fig. p6/lb (a), (b)
6.19 See the MATLAB program p6-19.m and Fig. p6_19(a), (b), $(c),(d),(e),(f),(g),(h)$ and (i).
For a binary message stream 01100101 , the serial data stream is converted to tiro parallel data streams, each with symbol rate as one half of the bit rate. The even data bits $m_{I}(t)$ (the first bit of data stream is labeled as bit 0) 0100 are first offset by one bit period and then multiplied by $x(t)$ (See Fig. 6.39 in section 6.9-2), the odd data bit $m_{Q}(t)$ are multiplied by $y(t)$. The sure of these time mintiplication results 2 is the MSK signal. The signals $m_{I}(t) \cdot x(t), m_{I}(t), m_{Q}(t) \cdot y(t)$, $m_{Q}(t)$, and $S_{\text {MSS }}(t)$ are shown in Fig.po-19 (a), (b), (c), (d). (e), respectively. In the receiver the input of the integrator;' $S_{m s k}(t)-x(t)$ in the I channel is shown in Fig. p. $6-19(f)$ and the output of the integrator is shows in Fig.pb-1P(g). For the Q channel. $S_{M s k}(t) . y(t)$ is shown in Fig. $P G-19(h)$ and the output of the integration is shown \dot{m} Fig. $\mathrm{P} 6-19(i)$. In Fig.p6.19(g) and (i), the sampled signals as the input of the threshold detectors are also illustrated.
6.20 $P_{b}=Q\left(\sqrt{\frac{3 N}{R-1}}\right)=Q\left(\sqrt{\frac{3 \times 501}{63-1}}\right)=Q(4.9725)=3.3 \times 10^{-7}$ In determine the above result, we assume that all interferes provide equal power, the same as the desired user. All users are considered orthogonal and independent, and the Cruussians approximation is assumed to be valid.
6. $21 Q\left(\sqrt{\frac{3 N}{K-1}}\right)=10 \times 3.3 \times 10^{-7}=3.3 \times 10^{-6}$

$$
\Rightarrow \sqrt{\frac{3 N}{K-1}}=4.5602 \Rightarrow \frac{3 \times 511}{K-1}=20.3058 \Rightarrow K \pm 76
$$

6.22
$T_{c}=1 / 1.2288 \mathrm{Mcps}, T_{3}=13 \mathrm{kbps}, 7.8 \mathrm{~dB} \sim 6$
so the processing gain is $\mathrm{PG}=\mathrm{T}_{s} / \mathrm{T}_{\mathrm{c}}=1.2288 \mathrm{M} / 13 \mathrm{k}=94$

Assume BPSK,

$$
B E R=Q\left[\frac{1}{\sqrt{\frac{K-1}{3 P G}+\frac{N o}{2 E b}}}\right]=Q\left[\frac{1}{\sqrt{\frac{20-1}{3 * 94.52}+1 / 12}}\right]=Q(2.58)=0.0049
$$

For actual IS-95 system, some coding overhead is added. So the bit rate is 19.2 kbps , and since QPSK is used, the base band rate is thus 9600 bps . This gives out $\mathrm{PG}=1.2288 \mathrm{M} / 9600=128$. The corresponding BER is:

$$
B E R=Q\left[\frac{1}{\sqrt{\frac{K-1}{3 P G}+\frac{N o}{2 E b}}}\right]=Q\left[\frac{1}{\sqrt{\frac{20-1}{3^{*} 128}+1 / 12}}\right]=Q(2.74)=0.0031
$$

6.25 (a) number of hops per second

$$
=2 \text { hops } / \text { bit } \times R=2 \times 25000=5 \times 10^{4} \text { hops } / \mathrm{sec}
$$

(b) For $\frac{E_{b}}{N_{0}}=20 d B=100$ and a single user (assuming AWES)

$$
P_{b}=\frac{1}{2} \cdot \exp \left(-\frac{E_{b}}{2 N_{0}}\right)=\frac{1}{2} \cdot \exp \left(-\frac{100}{2}\right)=9.64 \times 10^{-23}=0
$$

(c) number of possible hopping charnels,

$$
M=\frac{20 \times 10^{6}}{50 \times 10^{3}}=400 \Rightarrow P_{b} \doteq \frac{1}{2}\left[\frac{k-1}{M}\right]=\frac{1}{2} \times \frac{20}{400}=0.025
$$

(d)

$$
\begin{aligned}
P_{b} & =\frac{1}{2} P_{h}=\frac{1}{2}\left[1-\left(1-\frac{1}{M}\right)^{k-1}\right] \\
& =\frac{1}{2}\left[1-\left(1-\frac{1}{400}\right)^{200}\right]=0.2
\end{aligned}
$$

6.26] Hints for solving Problem 6.26

To evaluate the probability of error, P_{c}, of a signal in flat Rayleigh fading, simply weight the P_{e} by the conditional likelihood of the signal being a particular value. That is,

$$
\begin{equation*}
P(\text { error })=\int_{0}^{\infty} \underbrace{P\left(\text { error specific } E_{b} / N_{0}\right)}_{\text {in text books }- \text { AWGN }} \cdot P\left(\text { specific } E_{b} / N_{0}\right) d\left(\frac{E_{b}}{N_{0}}\right) \tag{1}
\end{equation*}
$$

where the probability density of the fading E_{b} / N_{0} is given as the square of a Rayleigh distributed riv., which is easily shown to be exponential, eqn. (6.155).

If we let $X=$ random E_{b} / N_{0} due to fading and let α^{2} denote a chi-square (exponential) r.v. with the pdf of a squared Rayleigh distributed voltage, then

$$
\begin{equation*}
X=\alpha^{2}\left(\frac{E_{b}}{N_{0}}\right) \tag{2}
\end{equation*}
$$

Let's let

$$
\begin{equation*}
\Gamma=\overline{\alpha^{2}} \frac{E_{b}}{N_{0}}, \text { the average value of } \frac{E_{b}}{N_{0}} \tag{3}
\end{equation*}
$$

Then:

$$
\begin{equation*}
P_{e}(\Gamma)=\int_{0}^{\infty} P_{e}(X) \cdot \frac{1}{\Gamma} e^{-T} d X(\text { EqD. 1) } \tag{4}
\end{equation*}
$$

is the value of P_{e} in flat slow Rayleigh fading.
6.26 Hints contd.

Hint: Derive the p.d.f. for

$$
\begin{equation*}
X=\alpha^{2}\left(\frac{E_{b}}{N_{0}}\right) \tag{5}
\end{equation*}
$$

where E_{b} / N_{0} is a constant and α is Rayleigh, and you get (6.155), an exponential PDF.

Note a table of integrals can evaluate (Eqn. 1) where

$$
\begin{gather*}
P_{e}^{(1)}(x)=\frac{1}{2} e^{-\eta x} \tag{6}\\
\eta=\frac{1}{2} \text { for noncoherent FSK } \tag{7}\\
\eta=1 \text { for DPSK } \tag{8}
\end{gather*}
$$

and

$$
\begin{align*}
& P_{e}^{(2)}(x)=\frac{1}{2} e r f c \sqrt{\beta x} \tag{9}\\
& \beta=\frac{1}{2}: \text { coherent FSK } \tag{10}\\
& \beta=1 \text { coherent PSK } \tag{11}
\end{align*}
$$

A table of integrals can show:

$$
\begin{align*}
P_{b}^{(1)} & =\int_{0}^{\infty} P_{b}^{(1)}(X) \frac{1}{\Gamma} e^{-\frac{X}{x}} d X \tag{12}\\
& =\frac{1}{2}\left[\frac{1}{1+\eta \Gamma}\right] \tag{13}\\
P_{e}^{(2)} & =\int_{0}^{\infty} P_{b}^{(2)}(X) \frac{1}{\Gamma} e^{-\frac{X}{x}} d X \tag{14}\\
& =\frac{1}{2}\left[\frac{1}{1-\sqrt{1+\frac{1}{B I}}}\right] \tag{15}
\end{align*}
$$

OR - if not closed form, use numerical integration for specific values of Γ.
6.26 Solution

We can treat the system as synchronized because they are in the nearby local area.
Using formula 6.147 and 6148, we can plot the curve for BER vs. K. Please note that you should use the exact expression of 6.148, not the approximation expression, so that you can observe the change of the curve. A sample code in Matlab is enclosed.

When $\mathrm{K}=25, \mathrm{BER}$ is above 0.2 , which is redeemed as unacceptable because we need to apply significant coding scheme to reduce the end user BER. However, for the homework, any reasonable justification about number of acceptable users will be credited.

Sync. Sys.

6.27 See the MATLAB program p6-27.m and Fig. P6-27a (a), (b). Fig.pb-27b(a), (b), Fig-pb-27c(a),(b) and Fig. pG.27d.

For a Gaussian, Compass filter with transfer function

$$
H_{\epsilon}(f)=\exp \left(-\alpha^{2} f^{2}\right)
$$

the $s-d B$ bandwidth B is related with α by the following equation.

