Low Density Parity Check
$(L D P C)$ Coles
Low Density Parity Check Codes were invented in 1963 by R.G. Gallager.
In addition to suggesting the use ob Codes witt sparse parity check matrices, Gallager suggested an iterative decoding algorithm (messag e-passing decoders) and Showed that using this ty pee of decoder, one can come close to shannon's bounds.

In general, an $\angle D P C$ code is the null space of a sparse (low density) matrix $H, \therefore e .$,

$$
\underline{v} H^{T}=0
$$

where H^{T} is a low-density matrix in the following sense:

Assume that H has T rows and n columns, and there are (on the average) i-ones in 'thea Coliemns and (one the average) l I's on rows. In $i \ll J$ and $l \ll n$, we cull the $9-1$
matrix H low-density or sparse.
In the regular or Gallager $\angle D P C$ Codes, the number of I's in each column or on each row are the scume.

Example: $(3,6)$ Regular LDPC code

$$
H=\left[\begin{array}{llllllllllll}
1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

This matrix has 3 one's in each column and 6. I's on each row.

Graphically, LDPC Code can be represented bi- partite graphs as suggested by Tanner.

Graphical representation of a $(3,6)$-regular LDPC code of length 12. The left nodes represent the variable nodes whereas the right nodes represent
the check nodes.
9.2
on one side are the message nodes also culled variable nodes; on the other side of the graph are Constraint nodes or check nodes.
A legitimate patter $n, i \cdot e$, a codeword is a bit stream that when fed to variable nodes, the check nodes will all have value zero. The above code is a regular LD PC code since each node on the left is incident by 3 edges and each node an right receives 6 edges. We say that message nodes have degree 3 and check nodes have degree 6.

The coddle whose Tanner graph is shown here is an irregular LDPC Code. Nodes $x_{1}, x_{3}, x_{7} ; x_{9}, x_{10}$. have degree 3. Nodes x_{2}, x_{5} have degree 2 . Nodes x_{4} and x_{8} have degree 4 and x_{6} has
 degree one.

Check nodes have degrees $7,7,3,6,5$.
An LDPC Code is specified in terms of an edge degree distribution for variable nodes and anote degree distribution for check nodes. Let λ_{i} be the fraction of edges that enter exit variable nodes of degree i. Define degree distribution polynomial:

$$
\lambda(x)=\sum_{i \geqslant 1} \lambda_{i} x^{i-1}
$$

I* is clear that $\lambda(1)=\sum_{i \geqslant 1} \lambda_{i}=1$
For the above ex ample:

$$
\lambda(x)=\frac{1}{28}+\frac{1}{7} x+\frac{15}{28} x^{2}+\frac{2}{7} x^{3}
$$

$\lambda_{1}=\frac{1}{28}$ since only 1 of 28 edges is incident on an edge of degree 1.
$\lambda_{2}=\frac{4}{28}=\frac{1}{7}$ since 2×2 edges fall upon two nodes of degree 2. Similarly, λ_{3} and λ_{4} are found to be $\frac{15}{28}$ and $\frac{2}{7}$, respectively.

$$
\int_{0}^{1} \lambda(x) d x=\left.\sum_{i \geqslant 1} \frac{\lambda_{i}}{i} x^{i}\right|_{0} ^{1}=\sum_{i \geqslant 1} \frac{\lambda_{i}}{e^{i}}
$$

In a similar, Gley, a degree distribution $f(x)$ Can be defined for the check noddles:

$$
f(x)=\sum_{i \geqslant 1} p_{i} x^{i-1}
$$

where l_{j} is the fraction of edges incident on a check node of degree i.
The rate of $a(\lambda, \rho)$ Code is given by

$$
P(\lambda, \rho)=1-\frac{\int \rho}{\int \lambda}
$$

where integrals are waken from o to 1.
Rate of the regular $\angle D P C$ Code:
Take the example of the $(3,6)$ Code discussed above. Since all variable nodes are of degree 3 then $\lambda_{3}=1$ and $\lambda(x)=x^{2}$.
Similarly $\rho_{6}=1 \Rightarrow P(x)=x^{5}$

$$
\int_{0}^{1} \lambda(x) d x=\frac{1}{3} \text { and } \int_{0}^{1} P(x) d x=\frac{1}{6}
$$

So, the rate is

$$
r=1-\frac{\int \rho}{\int \lambda}=1-\frac{1 / 6}{1 / 3}=\frac{1}{2}
$$

Assignment: Find the rate of the irregular Code discussed above (graph of page 9-3).

$$
9-5
$$

Encoding of $\angle D P C$ Codes
While sparsity of the check matrix makes the decoding of LDPC Codes, the fact that they are defined in terms of parity Check matrix makes their encoding complex.
Now it is a good time to reflect on the question of why we prefer Cyclic codes and systematic codes. If a linear code is not cyclic, we need to find codewords by multiplying the information vector \underline{u} by G. It means n vector multiplications (as the numberof columns of G is n). It also is evident that for each vector multiplication, we need on the average $n / 2$ operations (say $X O R$ and add). So, the complexity is $O\left(n^{2}\right)$. For a cyclic code the complexity is $O(n), i \cdot e_{0}$, if is linecer in n. non-cydic but For a non-cystematic code, we need to ind $(n-k)$ parities each requiring con the average $\frac{k}{2}$ operation. So, the oreler of encoding is $O(n k)$.

For LD PC Codes encoding is difficult since The graph can only show whether a pit pattern is a codeword or not. It cannot be used for relating the messages to Codewords.
To ease encoding there are several different approaches:

- To use cascaded rather than bi-partite graphs. This means doing encoding in number and several stages. By choosing the number of the stages, one can design codes that are encodeable and decodable in linear time.
The disadvantage of this technique is that since each stage adds parity to the message and parity from previous stage. The length of dada to the total codeword length is small (lo wrate, This results in performance loss compared to a si andard $\angle D P C$ Code.
- The other approach is to use codes that have lower triangular form. This is similar to

Solving system of linear equations using Gods elimination.

This approach while guarantees linear time encoding complexity, results in some loss of performance due to being restricted To a class of $\angle D P C$ Codes.

- Starting from a standard $\angle D P C$ Code, we try to make its parity check matrix lower triangular and stop when you carnot go further (Richardson and Urbanke). This results in an approximate lower triangigile matrix

An equivalent parity-check matrix in lower triangular form.

Then it is shown thus encoding complexity is $\theta\left(n+g^{2}\right)$ where g is the gap.

Efficient Encoders Based on Approximate Lower Triangulations

this section, we shall develop an algorithm for constructing efficient encoders for LDPC codes. The efficiency of the encoder arises from the sparseness of the parity-check matrix H and the algorithm can be applied to any (sparse) H. Although our example is binary, the algorithm applies generally to matrices H whose entries belong to a field \boldsymbol{H}. We assume throughout that the rows of H are linearly independent. If the rows are linearly dependent, then the algorithm which constructs the encoder will detect the dependency and either one can choose a different matrix H or one can eliminate the redundant rows from H in the encoding process.

Assume we are given an $m \times n$ parity-check matrix H over F. By definition, the associated code consists of the set of n-tuples x over f such that

$$
H \cdot r^{T}=0^{T}
$$

Probably the most straightforward way of constructing an encoder for such a code is the following. By means of Gaussian elimination bring H into an equivalent lower triangular form as shown in Fig. 2. Split the vector x into a systematic part s, $s \in F^{m-m}$, and a parity part $p, p \in F^{m}$, such that $x=(\boldsymbol{s}, \boldsymbol{p}$). Construct a systematic encoder as follows: i) Fill s with the ($n-m$) desired information symbols. ii) Determine the m parity-check symbols using back-substitution. More precisely, for $l \in[m]$ calculate

$$
p_{t}=\sum_{j=1}^{n-m} H_{l, j} s_{j}+\sum_{j=1}^{i-1} H_{l, j+n-m} p_{j}
$$

What is the complexity of such an encoding scheme? Bringing the matrix H into the desired form requires $O\left(n^{3}\right)$ operations of preprocessing. The actual encoding then requires $O\left(n^{2}\right)$ operations since, in general, after the preprocessing the matrix will no longer be sparse. More precisely, we expect that we need about $n^{2 r(\lambda-r)} \frac{2}{2}$ XOR operations to accomplish this encoding, where r is the rate of the code.

Given that the original parity-check matrix H is sparse, one might wonder if encoding can be accomplished in $O(n)$. As we will show, typically for codes which allow transmission at rates close to capacity, linear time encoding is indeed possible. And for those codes for which our encoding scheme still leads to quadratic encoding complexity the constant factor in front of the
1^{2} term is typically very small so that the encoding complexity stays manageable up to very large block lengths.

Our proposed encoder is motivated by the above example. Assume that by performing row and column permutations only we can bring the parity-check matrix into the form indicated in Fig. 3. We say that \boldsymbol{H} is in approximate lower triangular form. Note that since this transformation was accomplished solely by permutations, the matrix is still sparse. More precisely, assume that we bring the matrix in the form

$$
H=\left(\begin{array}{lll}
A & B & T \tag{5}\\
C & D & E
\end{array}\right)
$$

where A is $\langle m-g) \times(n-m), B$ is $(m-g) \times g, T$ is $(m-g) \times(n-g)$, C is $g \times(n-m), D$ is $g \times g$, and, finally, E is $g \times(m-g)$. Further, all these matrices are sparse ${ }^{2}$ and T is lower triangular with ones along the diagonal. Multiplying this matrix from the left by

$$
\left(\begin{array}{cc}
I & 0 \tag{6}\\
-E T^{-1} & I
\end{array}\right)
$$

we get

$$
\left(\begin{array}{ccc}
A & B & T \tag{7}\\
-E T^{-1} A+C^{\prime} & -E T^{-1} B+D & 0
\end{array}\right)
$$

Let $x=\left(s, p_{1}, p_{2}\right)$ where s denotes the systematic part, p_{1} and μ_{2} combined denote the parity part p_{1} has length g, and p_{2} has length ($m-g$). The defining equation $H x^{7}=0^{2}$ splits naturally into two equations, namely

$$
\begin{equation*}
A s^{I}+B p_{1}^{T}+\Gamma p_{2}^{T}=0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(-E T^{-1} A+C\right) s^{T}+\left(-E T^{-1} B+D\right) p_{1}^{T}=0 \tag{9}
\end{equation*}
$$

Define $\phi:=-E Y^{-1} B+D$ and assume for the moment that s is nonsingular. We will discuss the general case shortly. Then from (9) we conclude that

$$
p_{1}^{T}=-\sigma^{-1}\left(-E T^{-1} A+C\right) \cdot s^{T}
$$

Hence, once the $g \times(n-m)$ matrix $-\phi^{-1}\left(-L^{2} T^{-1} A+C\right)$ has been precomputed, the determination of p_{1} can be accomplished in complexity $O(n \times(n-m))$ simply by performing

[^0]For example for the $(3,6) \angle D P C$ Code H Can be transformed ton to:

$$
\begin{aligned}
H= & \left(\begin{array}{lll|l}
A & B & T \\
C & D & E
\end{array}\right) \\
= & \left(\begin{array}{lllllllll}
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
& 1,2,3,4,5,6,7,10,11,12,8,9
\end{array}\right) .
\end{aligned}
$$

by column re-ordering. This is an cypproximat lower triangular matrix with $g=2$.

Then E Can be made unto $\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ by Gauss elimination

To remove singularity of $=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ one can exchange column 8 with 5 . This Corresponds to the following equivalent H with coleen ordering

$$
\begin{aligned}
& \left(\begin{array}{l|l|l}
A & B & T \\
\hline C & D & E
\end{array}\right) \\
& =\left(\begin{array}{llllll|ll|llll}
1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right) . \\
& 1,2,3,4,10,6,7,5,11,12,8,9 \text {. } \\
& 9-9
\end{aligned}
$$

Then dividing codeword to ($\underline{s}, \underline{P_{1}}, p_{2}$) we have

$$
\begin{aligned}
& \text { s. } A^{\top}+p_{1} B^{\top}+p_{2} T^{\top}=0 \\
& s \cdot M^{\top}+p_{1} \phi^{\top}=0
\end{aligned}
$$

where $A=\left[\begin{array}{llllll}1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0\end{array}\right]$

$$
\begin{aligned}
& B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right], T=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right] \\
& M=\left[\begin{array}{llllll}
0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 0
\end{array}\right], \quad \phi=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

Let's encode $(1,0,0,0,0,0)=S$

$$
\left.\begin{array}{l}
S \cdot A^{\top}=[1,0,0,0,0,0
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& \underline{p}_{1}=s \cdot m^{\top}\left(\phi^{\top}\right)^{-1}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \\
& \underline{p}_{1}=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \\
& \underline{s} \cdot A^{\top}+p_{1} B^{\top}+p_{2} T^{\top}=0 \\
& {\left[\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right]+\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right]^{\top}+\underline{p}_{2} T^{\top}=0} \\
& {\left[\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
0 & 1 & 0 \\
0
\end{array}\right]+p_{2} T^{\top}=0} \\
& \\
& \Rightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right]=p_{2} \\
& \hline
\end{aligned}
$$

(from Shokrollahi's paper)
Decoding of $\angle D P C$ Codes Decocling of $\angle D P C$ Codes is performed message passing or belief Propagation (BP) algorithm. $B P$ is an iterative algorithm where in each iteration message nodes Send the likelihood of their value to all check nodes 9-11

To which they are connected and check nocles send messages to variable (message) nodes based on what they have received from other message nodes. Message nodes and check nodes exclude what they have received from one another when they send a message.

In BP the message sent from a message node is based on that node's received information and what it get's from check nodes connected to it cexcept the one it wants to send the message t). These are in the form of probability or likelihood ratio.

In particular, a^{r} node v sends the node c probability (or likelihood) of v hewing a certain value given its observation and what it has received in the previous iteration from its neighboring check nodes other than 6.

In the same way, the message C sendsto v is the probability that c has a certain value $q-12$
given all the message passed to c in the previous iteration from message nodes other titan V.

Likelihood ratio of a binary random variable x is

$$
L(x)=\frac{P(x=0)}{P(x=1)}
$$

and the conctition likelihood ratio of x given y is

$$
L(x \mid y)=\frac{P(x=0 \mid y)}{P(x=1 \mid y)}
$$

If x is an equi-probable random variable

$$
L(x \mid y)=L(y \mid x) .
$$

So, if $y_{1}, y_{2}, \ldots, y_{d}$ are independent random variables:

$$
L(x)=\prod_{i=1}^{d} L(x \mid y)
$$

or

$$
\log L(x)=\sum_{i=1}^{d} \log L(x \mid y) \quad\left[\begin{array}{l}
\log \text { is based e, i.e. } \\
\ln
\end{array}\right.
$$

Now assume $x_{1}, x_{2}, \ldots x_{e}$ are binary random variables and $y_{1}, y_{2}, \ldots y_{l}$ are random variables.

We would like to find

$$
\ln L\left(x_{1} \oplus x_{2} \oplus \cdots \oplus x_{l} \mid y_{1}, \ldots, y_{l}\right)
$$

Note that if we let

$$
2 P\left[x_{1}=0 \mid y_{1}\right]-1=p
$$

and

$$
2 P\left[x_{2}=0 \mid y_{2}\right]-1=9
$$

Then

$$
\begin{aligned}
& P\left[x_{1} \oplus x_{2}=0 \mid y_{1}, y_{2}\right]=P\left[x_{1}=0, x_{2}=0 \mid y_{1}, y_{2}\right]+ \\
& P\left[x_{1}=1, x_{2}=1 \mid y_{1}, y_{2}\right] \\
&=P\left[x_{1}=0 \mid y_{1}\right] P\left[x_{2}=0 \mid y_{2}\right]+P\left[x_{1}=1 \mid y_{1}\right] P\left[x_{2}=1 \mid y_{2}\right] \\
&= \frac{1+p}{2} \cdot \frac{1+9}{2}+\frac{1-p}{2} \cdot \frac{1-q}{2}=\frac{2+2 p q}{2}=1+p q
\end{aligned}
$$

So

$$
2 p\left[x_{1} \oplus x_{2}=0 \mid y_{1}, y_{2}\right]-1=p q
$$

Therefore,

$$
2 P\left[x_{1} \oplus x_{2} \oplus \cdots x_{l} \mid y_{1}, y_{2}, \ldots, y_{l}\right]-1=\prod_{i=1}^{l}\left[2 P\left(x_{i}=0 \mid y_{i}\right)-j\right]
$$

Let $\lambda_{i}=\log \frac{P\left(x_{i}=0 \mid y_{i}\right)}{e} \frac{P\left(x_{i}=1 \mid y_{i}\right)}{\text { be te } \log \text {-likelihood }}$ ratio of x_{i} given y_{i}.

$$
\begin{aligned}
& \text { So, } P\left(x_{i}=0 \mid y_{i}\right)=\frac{e^{\lambda_{i}}}{e^{\lambda_{i}}+1} \\
& 2 P\left(x_{i}=0 \mid y_{i}\right)-1=\frac{e^{\lambda_{i}}-1}{e^{\lambda_{i}}+1}=\frac{e^{\lambda_{i} / 2}-e^{-\lambda_{i} / 2}}{e^{\lambda_{i} / 2}+e^{\lambda_{i} / 2}}
\end{aligned}
$$

or

$$
2 P\left(x_{i}=0 \mid y_{i}\right)=\tanh \left(\frac{\lambda_{i}}{2}\right)
$$

Finally,

$$
\begin{aligned}
& \text { Finally, } \\
& \ln L\left[x, \oplus \cdots \oplus x_{e} \mid y_{1}, \cdots, y_{l}\right]=\ln \frac{1+\prod_{i=1}^{\ell} \tanh \left(\frac{\lambda_{i}}{2}\right)}{1-\prod_{i=1}^{\infty} \tanh \left(\frac{\lambda_{i}}{2}\right)}
\end{aligned}
$$

Let $m_{v_{c}}^{(l)}$ be the message passed from message node ν to check node c in itercotionl. similarly, denote by $m_{c v}^{(l)}$ the message from c to v. Then, the update equations in $B P$ are

O where C_{V} is the set of check nodes comnested to v. variable Similarly V_{c} are ${ }^{r}$ nodes connected to C.

Bit-flip decoding algorithm:

This method was devised by Gallager. When we Compute Syndromes the value of check nodes, if they are all zero then we assume there is no error and stop.

Then we find for each variable node, the number of sailed (1) Check nodes and \&lip the one with maximum number of failed check nodes connected to it.

We then re-Calculate the syndromes and slip the bit that is most connected to those with value 1 .

We continue it er action above until either all check nodes have zero value or until a certain number of pre-determined iterations howe been done with no success (failure in this casey. This simple $B P$ algorithm is given below:

1- Compute syndromes by $\underline{r} \cdot \underline{H}^{\top}=\underline{s}$. If all check-sums are 0 stop.
2- Find the number of sailed parity check equations for each node.

$$
9-16
$$

Denod the number of failed check node for each message nod by f_{i},

$$
i=1,2, \ldots, n .
$$

Step 3: I densify the set of bits S for which f_{i} is the largest.
Step 4: Flip bits in S.

STep 5: Repent steps 1 to 4 until the (success) parity-check Sums are zeror. or a preset maximum number of iterations is reached ldecoding failure)
Example
As some that
we have used this code and have received 0000000100 that is $x_{8}=1$ and

$$
x_{i}=0 \quad i \neq 8
$$

$9-17$

Step 1: Compute Syndromes:
We have:

$$
X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}\right\}=\{0,0,0,0,0,0,0,1,0,0\}
$$

This results in syndromes as:

$$
C=\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right\}=\{1,1,1,1,0\}
$$

Obviously, this indicates an error.

Step 2: Find the number of failed parity check equations for each node:
Below table shows the frequency of occurrence of each node in the failed parity check equations:

x_{i}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}
f_{i}	3	2	2	3	1	1	2	4	2	3

Step 3: Identify the bits for which the frequency of occurrence is the largest.
From Step 2, this is clearly x_{8}, which has occurred in all four failed parity check equations.

Step 4: Flip bits from Step 3.
By flipping x_{8}, the code word will be $X=\{0,0,0,0,0,0,0,0,0,0\}$.
This results in all zero syndromes, which means successful LDPC decoding.

[^0]: ${ }^{2}$ More precisely, each matrix contains at most $O(n)$ elements.

